When employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model for the description of transition phenomena in a non-equilibrium electron gas and a lattice under picosecond laser irradiation is proposed. Some characteristics are hard to measure directly at all. That is why the analysis of physical mechanisms involved in the ablation process by ultra-short laser pulses has to be performed on the basis of a theoretical consideration of `indirect' experimental data. For Copper and Nickel metal targets, the two-temperature model calculations explain that the temperature of the electron subsystem increased suddenly and approached a peak value at the end of laser pulse. In addition, the temperature profile of lattice temperature subsystem evolution slowly, and still increasing after the end of laser pulse. A good agreement prevails when a comparison between the present results and published results.
Recently, dental implants have experienced increasing demand as one of the most effective, permanent and stable ways for replacing missing teeth. However, peri-implant diseases that are multispecies plaque-based infections may ultimately lead to implant failure (i.e., late peri-implantitis). Therefore, the present study aims to detect the microbial diversity of subgingival plaque in peri-implantitis cases (N = 30) by comparing with healthy implants (N = 34) using culture-based identification methods, including VITEK 2 system. An increase in microbial diversity (29 species along with 1 and 7 isolates, which were classified as a genus and unidentified species, respectively) were observed in subgingival sites of diseased implants dominated by
... Show MoreGaucher disease (GD), which is due to a deficiency in the lysosomal enzyme β-glucocerebrosidase, is a rare genetic disorder. It is characterized by a wide variety of clinical manifestations and severity of symptoms, making it difficult to manage. A cross-sectional hospital-based genetic study was undertaken with 32 pediatric patients. We recruited 21 males and 11 females diagnosed with GD, with a male-to-female ratio of 1.91:1. The mean age of the study population was 8.79 ± 4.37 years with an age range from 8 months to 17 years. We included patients on clinical evaluation from 2011 to 2019. An enzyme assay test was used to measure β-glucosidase enzyme activity in leukocytes and the GBA gene s
The use of appropriate and accurate language is of utmost importance when describing people on the move and their dilemma, particularly refugees and displaced persons who have unique legal protection. So, there are a lot of scholars who have investigated the United Nations High Commissioner for Refugees’ (UNHCR) reports, but no one has examined representational and interactional meanings of UNHCR reports. Accordingly, this research aims to explore the role of UNHCR reports in enhancing the value of the humanitarian, which is attributed to the uniqueness of its use of language. The current study investigates the manner in which the textual content interacts with the images that are associated with the category of the UNHCR reports. Four re
... Show MoreI have studied the relationship between blood groups in humans and disease Cutaneous injury for the first time in Iraq study showed the presence of a significant statistical relationship between them leather Bmsoy in hospitals in Baghdad and its suburbs
Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show More