When employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model for the description of transition phenomena in a non-equilibrium electron gas and a lattice under picosecond laser irradiation is proposed. Some characteristics are hard to measure directly at all. That is why the analysis of physical mechanisms involved in the ablation process by ultra-short laser pulses has to be performed on the basis of a theoretical consideration of `indirect' experimental data. For Copper and Nickel metal targets, the two-temperature model calculations explain that the temperature of the electron subsystem increased suddenly and approached a peak value at the end of laser pulse. In addition, the temperature profile of lattice temperature subsystem evolution slowly, and still increasing after the end of laser pulse. A good agreement prevails when a comparison between the present results and published results.
A new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy.
Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The
... Show MoreThe electron mirror phenomenon has been explored to describe the behavior of a probing electron trajectory inside the chamber of scanning electron microscope (SEM). This investigation has been carried out by means of the modulated mirror plot curve technique. This method is based on expanding sample potential to a multipolar form to detect the actual distribution of the trapped charges. Actually an experimental result is used to guiding results of this work toward the accurate side. Results have shown that the influence of each type of multipolar arrangement (monopole, dipole, quadruple, octopole … etc.) mainly depends on the driving potential.
An Investigation of estimated Mechanical Properties of AL-Alloys 2024-T3, which is the most commonly used in industrial applications, been established experimentally. A new novel Plasma Peening techniques had applied for the whole surfaces of the material by CNC-Plasma machine for 48 specimen, and then a new investigation were toke over to figure the amount of change in mechanical properties and estimated fatigue life. It found that improvement was showing a nonlinear behavior according to peening duration time, speed, peening distance, peening number, and amount of effected power on the depth of the material thickness. The major improvement was at medium speed long duration time normal peening distance. Which shows up t
... Show MoreThe present work aimed to study the efficiency of thermal osmosis process for recovery of water from organic wastewater solution and study the factors affecting the performance of the osmosis cell. The driving force in the thermo osmosis cell is provided by a difference in temperature across the membrane sides between the draw and feed solution. In this research used a cellulose triacetate (CTA), as flat sheet membranes for treatment of organic wastewater under orientation membrane of active layer facing feed solution (FS) and draw solution (DS) is placed against the support layer. The organic materials were phenol, toluene, xylene and BTX (benzene, toluene, and xylene) used as feed solution. The osmotic agent in draw solution was
... Show MoreDC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.
Hypothesis Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings CO2/nano
... Show MoreA computational investigation is carried out to describe the behaviour of reflected electrons upon a charged insulator sample and producing mirror effect images. A theoretical expression for the scanning electron path equation is derived concerning Rutherford scattering and some electrostatic aspects. The importance of the derived formula come from its correlation among some of the most important parameters that controls the mirror effect phenomena. These parameters, in fact, are the trapped charges, incident angle and the scanning potential which investigated by considering its influences on the incident electrons. A pervious experimental operation requirements are adopted for operating the introduced expression. However, the obtained r
... Show More