When employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model for the description of transition phenomena in a non-equilibrium electron gas and a lattice under picosecond laser irradiation is proposed. Some characteristics are hard to measure directly at all. That is why the analysis of physical mechanisms involved in the ablation process by ultra-short laser pulses has to be performed on the basis of a theoretical consideration of `indirect' experimental data. For Copper and Nickel metal targets, the two-temperature model calculations explain that the temperature of the electron subsystem increased suddenly and approached a peak value at the end of laser pulse. In addition, the temperature profile of lattice temperature subsystem evolution slowly, and still increasing after the end of laser pulse. A good agreement prevails when a comparison between the present results and published results.
This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st
... Show MoreIn this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis
... Show MoreThe experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.
In this paper, some Bayesian estimators for the unknown scale parameter of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.