The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and lower surfaces of PV panels, air temperature, air flow rate, air pressure drop, wind speed, solar radiation and ambient temperature were measured. The power produced by solar cells is measured also. A theoretical model has been developed for the collector model IV based on energy balance principle. The prediction of the thermal and hydraulic performance was obtained for the fourth model of PV/T collector by developing a Matlab computer program to solve the numerical model. The experimental results show that the combined efficiency of model III is higher than that of models II and IV. The pressure drop of model III is less than that of models I and IV, by (43.67% and 49%). The average percentage error between the theoretical and experimental results was 9.67%.
This work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show MoreMillions of pilgrims and visitors from numerous parts of the world flock to Karbala (one of the most prominent ideological and religious places in central Iraq) each year to visit the holy shrines in Karbala due to their sanctity. Many improvements have been made to the Two Holy Shrines (THS), the Shrines of Imam Husayn and Imam Abbas, and the area between them (ATHS), due to the high temperatures in this region and to improve pedestrian thermal comfort. Studies on improving outdoor thermal comfort in Karbala are scarce. Hence, this research aims to look into historical and current architectural changes and how they affect thermal comfort. On the hottest summer day, the ENVI-met software program was used to simulate the building des
... Show MoreEffect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d
... Show MoreMillions of pilgrims and visitors from numerous parts of the world flock to Karbala (one of the most prominent ideological and religious places in central Iraq) each year to visit the holy shrines in Karbala due to their sanctity. Many improvements have been made to the Two Holy Shrines (THS), the Shrines of Imam Husayn and Imam Abbas, and the area between them (ATHS), due to the high temperatures in this region and to improve pedestrian thermal comfort. Studies on improving outdoor thermal comfort in Karbala are scarce. Hence, this research aims to look into historical and current architectural changes and how they affect thermal comfort. On the hottest summer day, the ENVI-met software program was used to simulate the building des
... Show MoreIn this work, chemical and thermal treatment were used to enhance silica extract on the purity of rice husk and to reduce the impurities associated with the extraction of silica. The thermal degradation of rice husk was studied. The characteristics and thermal degradation behavior of rice husk which investigated using thermogravimetric analyzer (TGA). Hydrochloric acid was used to soak the rice husk and the study of leaching influence is followed by XRF tests for samples before and after the combustion process. Acid treatment and combustion method seem to have a clear effect on silica purity. The pyrolysis processes were carried out at Laboratory temperature up to 650 oC in the presence of nitrogen gas flowing at 150 ml/min. The effect o
... Show MoreThis paper demonstrates the construction designing analysis and control strategies for fully tracking concentrated solar thermal by using programmable logic control in the city of Erbil-Iraq. This work used the parabolic dish as a concentrated solar thermal. At the focal point, the collected form of energy is used for heating a (water) in the receiver, analyzing this prototype in real-time with two different shapes of the receiver and comparing the results. For tracking the parabolic dish, four light-dependent resistors are used to detect the sun's position in the sky so that the tracking system follows it to make the beam radiation perpendicular to the collector surface all of the time during the day for maximum solar p
... Show MoreExplainable Artificial Intelligence (XAI) techniques enable transparency and trust in automated visual inspection systems by making black-box machine learning models understandable. While XAI has been widely applied, prior reviews have not addressed the specific demands of industrial and medical inspection tasks. This paper reviews studies applying XAI techniques to visual inspection across industrial and medical domains. A systematic search was conducted in IEEE Xplore, Scopus, PubMed, arXiv, and Web of Science for studies published between 2014 and 2025, with inclusion criteria requiring the application of XAI in inspection tasks using public or domain-specific datasets. From an initial pool of studies, 75 were included and categorized in
... Show More<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show MoreAbstract
Paraffin wax is utilized for the heat storage applications taking advantage from the high stored latent heat during the phase change (from solid to fluid) period. What isn't right with this procedure is that the wax has a little heat transfer rate because of its low thermal conductivity. The thermal conductivity improvement of the paraffin wax has been examined utilizing nano-material with high thermal conductivity. In the recent study, (Al2O3) nanoparticles with weights of 1, 2, and 3% of the paraffin wax were added to the paraffin wax. The Iraqi paraffin wax accessible at the local markets was utilized as a phase change material (PCM).
Many properties of the
... Show More