The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and lower surfaces of PV panels, air temperature, air flow rate, air pressure drop, wind speed, solar radiation and ambient temperature were measured. The power produced by solar cells is measured also. A theoretical model has been developed for the collector model IV based on energy balance principle. The prediction of the thermal and hydraulic performance was obtained for the fourth model of PV/T collector by developing a Matlab computer program to solve the numerical model. The experimental results show that the combined efficiency of model III is higher than that of models II and IV. The pressure drop of model III is less than that of models I and IV, by (43.67% and 49%). The average percentage error between the theoretical and experimental results was 9.67%.
Objective : Multiple sclerosis (MS) is a common neurological disease deeply linked with the immune-inflammatory disorders whereas the term (multiple) mostly refers to the multi-focal zones of Inflammation caused by lymphocytes and macrophages infiltration besides oligodendrocytes death. Accordingly , the dysfunctional immune system able to damage myelin ( a pivotal component of the central nervous system ) which responsible for communication among neurons. The aim of the present study is to innovate a biochemical relationship between MS and thyroid hormones (THs) by highlighting immunological responses and also to examine the action of Interferon beta (IFNβ) drug on thyroid hormone (THs) and thyroid stimulation hormone (TSH). Materials and
... Show MoreThe purpose of this research was to evaluate rice husk functionalized with Mg-Fe-layered double hydroxide (RH-Mg/Fe-LDH) as an adsorbent for the removal of meropenem antibiotic (MA) from an aqueous solution. Several batch experiments were undertaken using various conditions. Based on the results, the optimal Mg/Fe-LDH adsorbent with a pH of 9 and an M2+/M3+ ratio of 0.5 was associated with the lowest particle size (specifically. 11.1 nm). The Langmuir and Freundlich models were consistent with the experimental isotherm data (R2 was 0.984 and 0.993, respectively), and MA’s highest equilibrium adsorption capacity was 43.3 mg/g. Additionally, the second-order model was consistent with the adsorption kinetic results.
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MoreReading is one of the essential components of the English language. Countries that use English as a second language (ESL) sometimes have difficulties in reading and comprehension. According to many researches, mother tongue has proved some interferences with learning a second language. This study investigated the results of reading difficulties of young second language learners in terms of accuracy, comprehension, and rate using the Neale Analysis of Reading Ability test. The study was carried out in one of the High Schools for Boys in Hyderabad, India and included Grade five, aged 10-12 years. In order to understand the reading difficulties of English as a second language, a qualitative approach was employed. Interview, reading tes
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreChannel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T
... Show More