Desulfurization of a simulated diesel fuel by different adsorbents was studied in a fixed-bed adsorption process operated at ambient temperature and pressure. Three different adsorption beds were used, commercial activated carbon, Cu-Y zeolite, and layered bed of 15wt% activated carbon followed by Cu-Y zeolite.Initially Y-zeolite was prepared from Iraqi rice husk and then impregnated with copper. In general, the adsorbents tested for total sulfur adsorption capacity at break through followed the order Ac/Cu-Y zeolite>Cu-Y zeolite>Ac. The best adsorbent, Ac/Cu-Y zeolite is capable of producing more than 30 cm3 of simulated diesel fuel per gram of adsorbent with a weighted average content of 5 ppm-S, while Cu-Y zeolite producing of about 20 cm3 of diesel fuel per gram of adsorbent with a weighted average content of 2ppm-S. Activated carbon breaks through almost immediately.
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria