Preferred Language
Articles
/
joe-2186
Deep Desulfurization of Diesel Fuel by Guard Bed Adsorption of Activated Carbon and Locally Prepared Cu-Y Zeolite
...Show More Authors

Desulfurization of a simulated diesel fuel by different adsorbents was studied in a fixed-bed adsorption process operated at ambient temperature and pressure.  Three different adsorption beds were used, commercial activated carbon, Cu-Y zeolite, and layered bed of 15wt% activated carbon followed by Cu-Y zeolite.Initially Y-zeolite was prepared from Iraqi rice husk and then impregnated with copper. In general, the adsorbents tested for total sulfur adsorption capacity at break through followed the order Ac/Cu-Y zeolite>Cu-Y zeolite>Ac. The best adsorbent, Ac/Cu-Y zeolite is capable of producing more than 30 cm3 of simulated diesel fuel per gram of adsorbent with a weighted average content of 5 ppm-S, while Cu-Y zeolite producing of about 20 cm3 of diesel fuel per gram of adsorbent with a weighted average content of 2ppm-S. Activated carbon breaks through almost immediately.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 04 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
Perforation location optimization through 1-D mechanical earth model for high-pressure deep formations
...Show More Authors

Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni

... Show More
Publication Date
Tue Jan 14 2025
Journal Name
South Eastern European Journal Of Public Health
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre

... Show More
View Publication
Crossref
Publication Date
Mon Jul 15 2024
Journal Name
2024 46th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 08 2008
Journal Name
Al-mustansiriyah
Synthesis and Spectral Studies of the Transition Metals (Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and Pb(II)) with aniline-2-thio methylene chloridecomplexes.
...Show More Authors

Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Composition, Characterization and Antibacterial activity of Mn (II), Co (II), Ni (II), Cu (II) Zn (II) and Cd (II) mixed ligand complexes Schiff base derived from Trimethoprim
...Show More Authors

. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m

... Show More
Publication Date
Tue Jan 01 2019
Journal Name
Chemical Engineering Journal
Corrigendum to “Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies” [Chem. Eng. J. 308 (2017) 476–491]
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Oct 08 2018
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
TOTAL ORGANIC CARBON (TOC) PREDICTION FROM RESISTIVITY AND POROSITY LOGS: A CASE STUDY FROM IRAQ
...Show More Authors

     The open hole well log data (Resistivity, Sonic, and Gamma Ray) of well X in Euphrates subzone within the Mesopotamian basin are applied to detect the total organic carbon (TOC) of Zubair Formation in the south part of Iraq. The mathematical interpretation of the logs parameters helped in detecting the TOC and source rock productivity. As well, the quantitative interpretation of the logs data leads to assigning to the organic content and source rock intervals identification. The reactions of logs in relation to the increasing of TOC can be detected through logs parameters. By this way, the TOC can be predicted with an increase in gamma-ray, sonic, neutron, and resistivity, as well as a decrease in the density log

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (4)
Scopus Crossref