Preferred Language
Articles
/
joe-217
Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load
...Show More Authors

Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios were used: (0.0025, 0.0045 and 0.0065). Three values of span to effective depth ratio by (11, 13, and 16) were considered, the specimens showed an enhanced in ultimate load capacity ranged between (56.52% and 103.57%) as a result of increasing the lacing steel ratio to (0.0065) and decreasing the span to effective depth ratio by (31.25%)  respectively with respect to the control specimen. Additionally the using of lacing steel reinforcement leads to significant improvements in ductility by about (91.34%) with increasing the lacing steel ratio to (0.0025) with respect to the specimen without lacing reinforcement.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Manufacture of Load Bearing Concrete Masonry Units Using Waste Demolishing Material
...Show More Authors

The presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Engineering
Production of Load Bearing Concrete Masonry Units (blocks) From Green Concrete Containing Plastic Waste and Nano Silica Sand Powder
...Show More Authors

Industrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Compressive Strength of Bottle-Shaped Compression Fields of Fiber Reinforced Concrete Members
...Show More Authors

Applying load to a structural member may result in a bottle-shaped compression field especially when the width of the loading is less than the width of bearing concrete members. At the Building and Construction Department – the University of Technology-Iraq, series tests on fibre reinforced concrete specimens were carried out, subjected to compression forces at the top and bottom of the specimens to produce compression field. The effects of steel fibre content, concrete compressive strength, transverse tension reinforcement, the height of test specimen, and the ratio of the width of loading plate to specimen width were studied by testing a total of tenth normal strength concrete blocks with steel fibre and one normal s

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Overview of seismic performance assessment of reinforced concrete buildings
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Experimental Investigations on the Strength and Serviceability of Biaxial Hollow Concrete Slabs
...Show More Authors

Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 02 2010
Journal Name
Journal Of Engineering
Bearing capacity of square footing on geogrid reinforced loose sand to resist eccentric load
...Show More Authors

This research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively

Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Under Reamed Piles Behavior Under Dynamic Loading in Sandy Soil
...Show More Authors

Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numer­ical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Engineering
Analysis of Concrete Flexural Members Reinforced with Fibre Polymer
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring</p> ... Show More
View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be

... Show More
View Publication Preview PDF
Crossref