Preferred Language
Articles
/
joe-217
Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load
...Show More Authors

Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios were used: (0.0025, 0.0045 and 0.0065). Three values of span to effective depth ratio by (11, 13, and 16) were considered, the specimens showed an enhanced in ultimate load capacity ranged between (56.52% and 103.57%) as a result of increasing the lacing steel ratio to (0.0065) and decreasing the span to effective depth ratio by (31.25%)  respectively with respect to the control specimen. Additionally the using of lacing steel reinforcement leads to significant improvements in ductility by about (91.34%) with increasing the lacing steel ratio to (0.0025) with respect to the specimen without lacing reinforcement.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Engineering
Analysis of Concrete Flexural Members Reinforced with Fibre Polymer
...Show More Authors

Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring</p> ... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Behaviour of Fire Exposed Reinforced Concrete Rigid Beams with Restrained Ends
...Show More Authors

This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 02 2010
Journal Name
Journal Of Engineering
Bearing capacity of square footing on geogrid reinforced loose sand to resist eccentric load
...Show More Authors

This research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively

Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Under Reamed Piles Behavior Under Dynamic Loading in Sandy Soil
...Show More Authors

Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numer­ical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
A Soil-Pile Response under Coupled Static-Dynamic Loadings in Terms of Kinematic Interaction
...Show More Authors
Abstract<p>Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory</p> ... Show More
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
EFFCT OF HOOPS AND COLUMN AXIAL LOAD ON SHEAR STRENGTH OF HIGH-STRENGTH FIBER REINFORCED BEAM-COLUMN JOINTS
...Show More Authors

A reinforced concrete frame is referred as "RIGID FRAMES". However, researches indicate that the Beam-Column joint (BCJ) is definitely not rigid. In addition, extensive research shows that failure may occur at the joint instead of in the beam or the column. Joint failure is known to be a catastrophic type which is difficult to repair.
This study was carried out to investigate the effect of hoops and column axial load on the shear strength of high-strength fiber reinforced Beam-Column Joints by using a numerical model based on finite element method using computer program ANSYS (Version 11.0). The variables are: diameter of hoops and magnitude of column axial load.
The theoretical results obtained from ANSYS program are in a good a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Integrated Engineering
Behavior of High Strength Hybrid Reinforcement Concrete Beams
...Show More Authors

Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 11 2009
Journal Name
Journal Of Kerbala University
Evaluation The Behaviour of Reinforced Loose Sand under Inclined Loading
...Show More Authors