The biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and 23.84 mg g-1 respectively. While pore diffusion coefficients (Dp) were obtained to be 7.23×10-11 and 3.15×10-11 m2 s-1 for lead (II) and chromium (III) respectively from batch experiments. The results show that the general rate model was found correct for describing the biosorption process of the dynamic behavior of the DAB adsorber column.
In this paper, the concept of contraction mapping on a -metric space is extended with a consideration on local contraction. As a result, two fixed point theorems were proved for contraction on a closed ball in a complete -metric space.
Coupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
Health and environmental factors as well as operational difficulties are major challenges facing the development of an anaerobic digestion process. Some of these problems relate to the use of sludge collected from primary and secondary clarifier units in wastewater treatment plants for laboratory purposes.
The present study addresses the preparation of sludge for laboratory purposes by using a mixture that consists of the digested sludge, which is less pathogenic, compared to the collected sludge from the primary or secondary clarifier, and food wastes. The sludge has been tested experimentally for 19 and 32 days under mesophilic conditions. The results show a steady methane production rate from the anaerobic dig
... Show MoreThis study investigated the feasibility of anaerobic co-digestion of giant reed (GR) inoculated with waste manure as a co-substrate for biogas production. The performance of co-digestion was evaluated in 4 anaerobic digesters operated in batch mode at different conditions. The effects of alkali pretreatment with NaOH (4% w/v) solution, inoculum type, and thermal condition were studied. The results demonstrated that the alkali-pretreatment of GR enhanced the biogas generation by about 15% at mesophilic conditions. Thermophilic conditions enhanced the biogas recovery from both alkali-free and alkali pretreated GR by 15% and 127%, respectively. The kinetic study of the co-digestion process of GR for biogas recovery suggeste
... Show MoreA new chelate complexes of Co(II),Ni(II),Zn(II) and Cd(II) were prepared by reacting these ions with the ligand 2-[4- Carboxy methyl phenyl azo]-4,5-diphenyl imidazole (4CMeI) The preparation were conducted after fixing the optimum conditions such as (pH) and concentration .UV- visible spectra of these complex solutions were studied for a range of (pH) and concentration which obey lampert-Beers Law.The structures of complexes were deduced according to mole ratio method which were obtained from the spectroscopic studies of the complex solutions .The ratios of metal: ligand obtained were (1:2) for all complexes..(UV-Vis) absorption spectra and The infrared spectra of the chelating complexes were studied ,this may indicate that coordination be
... Show MoreResponse surface methodology (RSM) based on central composite design was successfully applied to redesign MRS media for maximizing both biomass and bacteriocin production from Lactobacillus plantarum NH40. First, glucose and yeast extract were chosen as the best carbon and nitrogen sources based on classical optimization results of one factor at time which also revealed the possibility of eliminating peptone and meat extract from the original composition of medium without affecting the growth and bacteriocin production. Statistical experimental design based on a regression model generated using the Design expert 7 software showed that the optimum concentrations of glucose, yeast extract, tween80, NH4Cr, CH
A mathematical model is developed which predicates the performance of cylindrical ion exchange bed involving comparing of axial dispersion model for cation exchange column with different assumption, this model permits the performance to predicate the residence time within the bed with the variance, axial dispersion and Pecklet No. to indicated deviation from plug flow model.
Two type of systems are chosen for positive ions first with divalent ions (Ca+2) to exchange with resin of Na+1form used as application in water softener units and second with monovalent ions (Na+1) to exchange with resin of H+1 form used as application in deionize water units &n
... Show More