Experimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinforced concrete slab specimens and comparing the results with specimens without burning (reference specimens). The results showed that, the concrete compressive strength, concrete modulus of rupture and the flexural strength decreases while the maximum (central) deflection increases with increasing the fire flame temperature. For suddenly cooled specimens the residual flexural strength is less than that of gradually cooled specimens while the deflection is greater. For slabs with 20 MPa concrete strength and gradually cooled, the residual bending strength percent is 81.5%, 75% and 62.3% ,while the increase in central deflection is 5%, 33%, and 105% at burning temperature 300ºC, 500ºC and
700ºC respectively. For suddenly cooled specimens of the same strength and exposed to the same temperatures above the residual flexural strength is 77.9%, 68.3% and 58.3% while the increase in central deflection is 25%, 52%, and 118% respectively. When the strength of concrete specimens increase, the residual flexural strength experiences small increase and the increase is of lower rate in the central deflection for 300 ºC and 500 ºC burn temperatures while the decrease is significant for 700 ºC burning temperature.
This study has been conducted to examin the effect of sodium propionate at different level of 0.03,0.06,0.10% on the number of bacteria and mold and to extend the storage life of laboratory processed biscuit. The results indicated that the use of 0.10% sodium propionate prolonged the storage peroid until the third month, while the use of 0.20% sodium propionate showed no growth of bacteria up to six month of storage, three types of bacteria has been isolated from processed biscuit, namely, Staphylococcus aureus, Bacillus cereus, Esherichia coli. using 0.10% sodium propionate showed no growth of mold up to three month of storage ,while using of 0.15 % and 0.20% sodium propionate prevent the growth
... Show MoreThis study has been conducted to examin the effect of potassium sorbate at different level of 0.03,0.06,0.10% on the number of bacteria and mold and to extend the storage life of laboratory processed biscuit. The results indicated that the use of 0.03% potassium sorbate prolonged the storage peroid until the third month .three types of bacteria has been isolated from processed biscuit, namely, Staphylococcus aureus, Bacillus cereus, Esherichia coli using 0.06% potassium sorbate showed no growth of bacteria up to six month of storage ,while using of 0.03% and 0.06% potassium sorbate prevent the growth of mold up to three and six months of storage respectively. Both Aspergillus and Penicillium were isolated from the processed biscuit.
The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu
... Show MoreThis search aim to measure Hardness for Epoxy resin and for unsaturated Polyester resin as base materials for composite Hybrid and the materials used is Hybrid fiber Carbon-Kevlar. The Hand Lay-up method was used to manufacture plates of Epoxy resin (EP) and unsaturated Polyester EP,UPE backed by Hybrid fiber (Carbon-Kevlar) and with small volume fraction 5,10 and 15 for every there are Layer of fibers (1,2 and 3). The hardness test was count for material EP, UPE resin and there composites and that we notice that the Hardness (HB) decreased with increase of temperatures.
Prediction of the structural response of reinforced concrete to the time-dependent, creep and shrinkage, volume changes is complex. Creep is usually determined by measuring the change, with time, in the strain of specimens subjected to a constant stress and stored under appropriate conditions. This paper brings into view the development of creep strain for four self-compacting concrete mixes: A40, AL40, B60 and BL60 (where 40 and 60 represent the compressive strength level at 28 days and L indicates to Portlandlimestone cement). Specimens were put under sustained load and exposed to controlled conditions in a creep chamber (ASTM C512). The test results showed that normal strength Portland-limestone mixes have yielded lower ultimate c
... Show MoreThe effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep
... Show MoreThe massive growth of the automotive industry and the development of vehicles use lead to produce a huge amount of waste tire rubber. Rubber tires are non-biodegradable, resulting in environmental problems such as fire risks. In this search, the flexural behavior of steel fiber reinforced self-compacting concrete (SFRSCC) beams containing different percentages and sizes of waste tire rubbers were studied and compared them with the flexural behavior of SCC and SFRSCC. Micro steel fiber (straight type) with aspect ratio 65 was used in mixes. The replacement of coarse and fine aggregate was 20% and 10% with chip and crumb rubber. Also, the replacement of limestone dust and silica fume was 50%, 25%, and 12% with ground rubbe
... Show MoreThe reliability of optical sources is strongly dependent on the degradation and device characteristics are critically dependent on temperature. The degradation behaviours and reliability test results for the laser diode device (Sony-DL3148-025) will be presented .These devices are usually highly reliable. The degradation behaviour was exhibited in several aging tests, and device lifetimes were then estimated. The temperature dependence of 0.63?m lasers was studied. An aging test with constant light power operation of 5mW was carried out at 10, 25, 50 and 70°C for 100hours. Lifetimes of the optical sources have greatly improved, and these optical sources can be applied to various types of transmission systems. Within this degradation range,
... Show MoreThe disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste