The present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temperatures difference between PCM and HTF were all investigated. Results showed that the PCMs in a cylindrical container melt and solidify quicker than the square container. The increase in mass flow rate and/or temperature difference decreases the time required for complete phase change. Paraffin's solidify quicker than they melt and store more energy than they release
Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger). Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Final
... Show MoreThis research aims to investigate the thermal performance of different thermal composite insulators, wrapped around a closed-loop copper pipe (CLP). To achieve this aim a system was designed and manufactured. It is consisted of closed water tank insulated by Rock Wool, and supplied with two electric heaters, two thermostat, a flow meter, a water pump, digital temperature scales, and four series of (CLP).
Six insulators were prepared namely; composites of Impregnated Fiberglass with Elastoclad and foaming Rubber (FER), Impregnated Fiberglass with Elastoclad resin and Polymeric Membrane (FEM), Impregnated Fiberglass with Polyurethane thermoset resin and Foaming Rubber (FUR), Impregnated Fiberglass with Polyurethane thermoset resin and P
Background: Polymethyl methacrylate (PMMA) is used in denture fabrication and considered as the most reliable material for the construction of removable prosthodontic appliances. The material is far from ideal in fulfilling the mechanical requirements and the effect of autoclave processing has not been fully determined. The purpose of this study was to evaluate the effect of addition of salinized (ZrO2) Nano fillers in percentages 3%, 5% and 7% by weight on some properties of heat cured acrylic processed the by autoclave and compare it with 0% (control) group . Materials and methods: The silanized(ZrO2) Nano-particles was added to PMMA powder by weight in three different percentages 3%, 5% and 7%, mixed by probe ultra-sonication machine.
... Show MoreAn experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh
... Show MoreThe present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.
The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltme
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements. Midline fracture; poor thermal conductivity and water sorption, are common problem in this material. The purpose of this study was to evaluate the effect of addition of surface treated Aluminum oxide nano fillers on some properties of heat cured (PMMA). Materials and methods: In addition to controlled group of heat cured PMMA the silanized (Al2O3) nanoparticles was added to PMMA powder by weight in three different percentages 1wt%, 2wt% and 3wt%, mixed by probe ultra-sonication machine. 200 specimens were constructed and divided into 5 groups according to the test (e
... Show MoreBackground: The PMMA polymer denture base materials are low mechanical properties, adaptation of the denture base to underlying tissue is important for retention and stability of denture. The aim of the study was toevaluate the effect of mixtureZrO2-Al2O3 nanoparticles on impact strength, transverse strength, hardness, roughness, denture base adaptation of heat cured acrylic resin denture base material. Materials and methods: One hundred (100) specimens were prepared, the specimens were divided into five groups (20 specimens to each) according to the test type, each group was subdivided in to two subgroups (control and experimental) each subgroup consist of 10 specimens, the experimental group included mixture of 2% (ZrO2-Al2O3ratio2:1) b
... Show MoreBackground: Heat-cured poly (methyl methacrylate) the principal material for the fabrication of denture base have a relatively poor mechanical properties. The aim of this study was to investigate the effect of glass flakes used as reinforcement on the surface hardness and surface roughness of the heat-processed acrylic resin material. Material and method: Glass flakes (product code: GF002) pretreated with silane coupling agent were added to Triplex® denture base powder using different concentrations. A total of 100 specimens of similar dimensions (65 x 10 x 2.5) mm were prepared, subdivided into 2 main groups of 50 specimens for each of the study tests. Ten specimens for the control group and 40 specimens for each of the experimental gro
... Show MoreThe evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient