The presence of heavy metals in the environment is major concern due to their toxicity. In the present study a strong acid cation exchange resin, Amberlite IR 120 was used for the removal of lead, zinc and copper from simulated wastewater. The optimum conditions were determined in a batch system of concentration 100 mg/L, pH range between 1 and 8, contact time between 5 and 120 minutes, and amount of adsorbent was from 0.05 to 0.45 g/100 ml. A constant stirring speed, 180 rpm, was chosen during all of the experiments. The optimum conditions were found to be pH of 4 for copper and lead and pH 6 for zinc, contact time of 60 min and 0.35 g of adsorbent. Three different temperatures (25, 40 and 60°C) were selected to investigate the effect of adsorption temperature on heavy metals adsorption onto Amberlite IR. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes were calculated. Moreover, in order to understand the heavy metal extraction kinetics in the presence of Amberlite IR 120, the ion exchange kinetics was also studied. The ion exchange kinetics data were regressed by the pseudo first-order, second-order models. The results obtained show that the Amberlite IR 120 strong acid cation exchange resin performed well for the removal of lead, zinc and copper.
An experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreBackground: This study was formulated to compare the effect of 5%hydrofluoric acid in comparison to 37%phosphoric acid with and without the application of silane on bond strength of composite to porcelain. Materials and Methods: Specimen preparation was divided in to two phases, metal-disks fabrication (8mm-diameter and 4mm-thickness) and ceramic veneering. Thirty two specimens were prepared, sandblasted with 50 μm aluminum oxide, and divided into four groups of eight samples. Groups I and III were etched with 37%phosphoric acid while groups II and IV were etched with 5%hydrofluoric acid; and groups I and II were silaneted while groups III and IV were not. Heliobond, and resin composite were applied to each specimen using a plastic transpa
... Show MoreEFFECT OF SPRAYING IRON AND ZINC CONCENTRATIONS IN GRAIN AND LEAF CONTENT FOR TWO VARIETIES OF WHEAT CROP
Pot experiment was carried out at the College of Agriculture – Baghdad University during autumn season, 2007. Thirteen treatments were formulated to evaluate the effectiveness of four applications of Phosphorus (0, 60, 60×2 and 120 Kg P. h-1) and three applications of Zinc (0, 25×2 mg Zn. L-1 and 50 mg Zn. Kg soil-1) along with inoculating seeds of bean with strains mixture 889 and 1865 and non-inoculated treatment, on nodulation, yield and protein content in seeds (N%). The results showed that inoculated plants exceeded on non-inoculated one in all the studied characteristics. While, P and Zn, applications at the rate of 60×2 kg/ha and 25×2 mg/L respectively, significantly, increased, nodulation, yield, protein content in se
... Show More