The presence of heavy metals in the environment is major concern due to their toxicity. In the present study a strong acid cation exchange resin, Amberlite IR 120 was used for the removal of lead, zinc and copper from simulated wastewater. The optimum conditions were determined in a batch system of concentration 100 mg/L, pH range between 1 and 8, contact time between 5 and 120 minutes, and amount of adsorbent was from 0.05 to 0.45 g/100 ml. A constant stirring speed, 180 rpm, was chosen during all of the experiments. The optimum conditions were found to be pH of 4 for copper and lead and pH 6 for zinc, contact time of 60 min and 0.35 g of adsorbent. Three different temperatures (25, 40 and 60°C) were selected to investigate the effect of adsorption temperature on heavy metals adsorption onto Amberlite IR. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes were calculated. Moreover, in order to understand the heavy metal extraction kinetics in the presence of Amberlite IR 120, the ion exchange kinetics was also studied. The ion exchange kinetics data were regressed by the pseudo first-order, second-order models. The results obtained show that the Amberlite IR 120 strong acid cation exchange resin performed well for the removal of lead, zinc and copper.
In this work , the effect of chlorinated rubber (additive I), zeolite 3A with chlorinated rubber (additive II), zeolite 4A with chlorinated rubber (additiveIII), and zeolite 5A with chlorinated rubber (additive IV), on flammability for epoxy resin studied, in the weight ratios of (2, 4, 7,10 & 12%) by preparing films of (130x130x3) mm in diameters, three standard test methods used to measure the flame retardation which are ; ASTM : D-2863 , ASTM : D-635 & ASTM : D-3014. Results obtained from these tests indicated that all of them are effective and the additive IV has the highest efficiency as a flame retardant.
This research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.
Slag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were
... Show MoreExposure to lead results in significant accumulation in most of vital organs, and free radical damage has been proposed as a cause of lead-induced tissue damage, where oxidative stress is a likely molecular mechanism. This study was designed to evaluate therapeutic effects of melatonin in lead-induced organ toxicity in rats. The therapeutic effects of melatonin on lead induced toxicity in rats were evaluated using 36 rats, which were allocated into 3 groups and treated as follows: Group I, includes 12 rats injected subcutaneously with 0.2 ml physiological saline for 30 days, followed by treatment with a daily dose of 20mg/kg melatonin, administrated I.P for the successive 30 da
... Show MoreThe excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MoreThe present work provides to treat real oily saline wastewater released from drilling oil sites by the use of electrocoagulation technique. Aluminum tubes were utilized as electrodes in a concentric manner to minimize the concentrations of 113400 mg TDS/L, 65623 mg TSS/L, and the ions of 477 mg HCO3/L, 102000 mg Cl/L and 5600 mg Ca/L presented in real oily wastewater under the effect of the operational parameters (the applied current and reaction time) by making use of the central composite rotatable design. The final concentrations of TDS, TSS, HCO3, Cl, and Ca that obtained were 93555 ppm (17.50%), 11011 ppm (83.22%), 189ppm (60.38%), 80000ppm (22%), and 4200 ppm (25%), respectively, under the optimum values of the operational parameters
... Show MoreMany water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu
... Show MoreThe inhibitive action of a blend of sodium nitrite/sodium hexametaphosphate (SN+SHMP) on corrosion of carbon steel in simulated cooling water systems (CWS) has been investigated by weight loss and electrochemical polarization technique. The effect of temperature, velocity, and salts concentrations on corrosion of carbon steel were studied in the absence and presence of mixed inhibiting blend. Also the effect of inhibitors blend concentrations (SN+SHMP), temperatures, and rotational velocity, i.e., Reynolds number (Re) on corrosion rate of carbon steel were investigated using Second-order Rotatable Design (Box-Wilson Design) in performing weight loss and corrosion potential approach. Electrochemical polarization measurements
... Show MoreBackground: The aim of this study was to measure the radiopacity (RO) of modified microhybrid composite resins by adding 2 types of nanofillers (Zinc Oxide and Calcium Carbonate) in two concentrations 3% and 5% and comparing them to unmodified microhybrid composite resins and to nanofilled composite resin. Materials and Methods: Two types of composite resin were used (Microhybrid composite MH Quadrent anterior shine and Nanofilled composite resin Filtek Z350 XT), for each tested group five disk-shaped specimens (1-mm-thick and 15 mm diameter) were fabricated. The material samples were radiographed together with the aluminum step wedge. The density of the specimens was determined with a transmission densitometer and was expressed in term of
... Show More