The presence of heavy metals in the environment is major concern due to their toxicity. In the present study a strong acid cation exchange resin, Amberlite IR 120 was used for the removal of lead, zinc and copper from simulated wastewater. The optimum conditions were determined in a batch system of concentration 100 mg/L, pH range between 1 and 8, contact time between 5 and 120 minutes, and amount of adsorbent was from 0.05 to 0.45 g/100 ml. A constant stirring speed, 180 rpm, was chosen during all of the experiments. The optimum conditions were found to be pH of 4 for copper and lead and pH 6 for zinc, contact time of 60 min and 0.35 g of adsorbent. Three different temperatures (25, 40 and 60°C) were selected to investigate the effect of adsorption temperature on heavy metals adsorption onto Amberlite IR. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes were calculated. Moreover, in order to understand the heavy metal extraction kinetics in the presence of Amberlite IR 120, the ion exchange kinetics was also studied. The ion exchange kinetics data were regressed by the pseudo first-order, second-order models. The results obtained show that the Amberlite IR 120 strong acid cation exchange resin performed well for the removal of lead, zinc and copper.
This work deals with kinetics and chemical equilibrium studies of esterification reaction of ethanol with acetic acid. The esterification reaction was catalyzed by an acidic ion exchange resin (Amberlyst- 15) using a batch stirred tank reactor. The pseudo-homogenous and Eley-Rideal models were successfully fitted with experimental data. At first, Eley-Rideal model was examined for heterogeneous esterification of acetic acid and ethanol. The pseudo-homogenous model was investigated with a power-law model. The apparent reaction order was determined to be (0.88) for Ethanol and (0.92) for acetic acid with a correlation coefficient (R2) of 0.981 and 0.988, respectively. The reaction order was determined to be 4.1087x10-3 L0.8/(mol0.8.min) with
... Show MoreThe moisture sorption isotherms of Mefenamic acid tablets were investigated by measuring the experimental equilibrium moisture content (EMC) using the static method of saturated salt solutions at three temperatures (25, 35, and 45°C) and water activity range from 0.056 to 0.8434. The results showed that EMC increased when relative humidity increased and the sorption capacity decreased, the tablets became less hygroscopic and more stable when the temperature increased at constant water activity. The sorption curves had a sigmoid shape, type II according to Brunauer’s classification. The hysteresis effect was significant along with the whole sorption process. The results were fitted to three models: Oswin, Smith, and Guggen
... Show MoreA mercury porosimeter has been used to measure the intrusion volume of the three types mercury positive lead acid-battery plates. The intrusion volumes were used to calculate the pore diameter, pore volume, pore area, and pore size distribution. The variation of the pore area in positive lead acid-battery plates as well as of the pore volume has the following sequence. Paste positive > Uncured positive > Cured positive
This study was conducted to determine the activity of plant Sesbania rostrata and two isolate from arbuscular mycorrhizae fungi (A,B) as a bioremediation of soil polluted by cadmium and lead elements in north and south of Baghdad city. The results showed that the average of soil pollution by cadmium and lead elements in north of Baghdad was less than the average of soil pollution in the south of Baghdad which recorded 10.0, 9.0 mg/kg and 27.0, 25.0 mg/kg respectively. The plant Sesbania recorded ability to accumulate the lead element in shoot system 19.65 mg/kg and in root system 27.2 mg/kg and for cadmium element 19.6, 24.6 mg/kg in shoot and root respectively. The results showed that the isolate A from soil pollution is more effected
... Show MoreIn this study, we design narrow band pass filter for window (3_5) ?m dependent on the needle optimization method , and a comparison with global designs published -Also, the effect of change parameter design on the optical performance of filter was studded and being able to overcome the difficulties of the design.In this study, the adoption of homogeneous optical properties materials as thin film depositing on a substrate of germanium at wavelength design (? = 4 ?m). For design this kind of filters we used advanced computer program (Matlab )to build a model design dependent both matrix characteristic and Needle technique. In this paper we refer to the type of Mert function , which is used for correct optical performance acces
... Show MoreThe corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
Two Schiff base ligands L1 and L2 have been obtained by condensation of salicylaldehyde respectively with leucylalanine and glycylglycine then their complexes with Zn(II)were prepared and characterized by elemental analyses , conductivity measurement , IR and UV-Vis .The molar conductance measurement indicated that the Zn(II) complexes are 1:1 non-electrolytes. The IR data demonstrated that the tetradentate binding of the ligands L1 and L2 . The in vitro biological screening effect of the investigated compounds have been tested against the bacterial species Staphlococcus aureus, Escherichia coil , Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by the disc diffusion method . A comparative study of inhibition values of
... Show MoreThis work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the spe
... Show More