In this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also found that the use of (SSMC) leads to increase in yield by a factor of 3 of (SWNTs) and produces nanocoil at the same time.
In this study, investigations of structural properties of n-type porous silicon prepared by laser assisted-electrochemical etching were demonstrated. The Photo- electrochemical Etching technique, (PEC) was used to produce porous silicon for n-type with orientation of (111). X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon surfaces. Atomic force microscopy (AFM) analysis was used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of porous silicon decreased as etching current density increased. The chemical bonding and structure were investigated by using fourier transformation infrared spec
... Show MoreAlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreThis paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh
... Show MoreThe driving idea for the present work was to combine the effect of polyvinyl alcohol (PVA) as corrosion inhibitor with the distance between the anodic and cathodic elements of the galvanic cell, beside their area ratio, in scope of synergistic suppression of galvanic corrosion on Cu/Fe model couple, using weight loss method. The performance affecting galvanic corrosion process has been tested for three major factors affect the process:
1. Four PVA inhibitor concentrations were selected to be (0, 1000, 4000 and 7000 ppm) in simulated cooling water.
2. Two cathode: anode area ratios as 1:1 and 2.4:1.
3. Two distances apart cathode – anode as 3 and 7 cm.
Maximum corrosion inhibition achieved was 86% which indicates that increa
In this study we focused on the determination of influence the novel synthesized thiosemicarbazide derivative "2-(2-hydroxy-3-methoxybenzylidene) hydrazinecarbothioamide" (HMHC) influenced the corrosion inhibition of mild steel (MS) in a 1.0 M hydrochloric acid acidic solution.This is in an effort to preserve the metal material by maintaining it from corrosion.The synthesized inhibitor was characterized using elemental analysis, and NMR-spectroscopy. Then the corrosion inhibition capability of (HMHC) was studied on mild steel in an acidic medium by weight loss technique within variables [temperature, inhibitor concentration, and time]. The immersion periods were [1:00, 3:00, 5:00, 10:00, 24:00, and 72:00] hours and the tem
... Show MoreLead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is
... Show MoreThe aim of this study was to investigate antibiotic amoxicillin removal from synthetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulate
... Show MoreIn this work a hybrid composite materials were prepared containing matrix of polymer (polyethylene PE) reinforced by different reinforcing materials (Alumina powder + Carbon black powder CB + Silica powder). The hybrid composite materials prepared are: • H1 = PE + Al2O3 + CB • H2 = PE + CB + SiO2 • H3 = PE + Al2O3 + CB + SiO2 All samples related to electrical tests were prepared by injection molding process. Mechanical tests include compression with different temperatures and different chemical solutions at different immersion times The mechanical experimentations results were in favour of the samples (H3) with an obvious weakness of the samples (H1) and a decrease of these properties with a rise in temperature and the increasing
... Show MoreTests were performed on asphalt concrete specimens with (101.6 mm in diameter and 101.6 mm in height), and the results were implemented for calculating permanent deformation and resilient modulus under repeated compressive stress with different levels of stresses (0.068, 0.138 and 0.206) MPa at 40 ºC. Two types of additives namely (carbon black-asphalt) and (SBR-asphalt) were tried as rejuvenators with three percentages of (0.5, 1 and 1.5) % by weight of asphalt cement along with two ratios of AC (1 and 2) % have been implemented as rejuvenator and blended with the reclaimed asphalt concrete. Aged materials were obtained from the site. 100% Reclaimed Asphalt Pavement material from the reclaimed mixture is implemented. A
... Show More