Experimental research was carried out to investigate the effect of fire flame (high temperature) on specimens of short columns manufactured using SCC (Self compacted concrete). To simulate the real practical fire disasters, the specimens were exposed to high
temperature flame, using furnace manufactured for this purpose. The column specimens were cooled in two ways. In the first the specimens were left in the air and suddenly cooled using water, after that the specimens were loaded to study the effect of degree of
temperature, steel reinforcement ratio and cooling rate, on the load carrying capacity of the reinforced concrete column specimens. The results will be compared with behaviour of columns without burning (control specimens). The results showed that, the ultimate load capacity of columns exposed to fire decreases with increasing the fire flame temperature. At burning temperature 300 Co , 500 Co and 700 Co , the average residual ultimate load capacity for gradually cooled specimens were 91%, 81% and 71% respectively. By increasing the ratio of longitudinal reinforcement 44% , the maximum improvement in the ultimate load capacity was 24% and 17% for the gradually and sudden cooling respectively at Co 500 . For the same longitudinal reinforcement ratio and fire burning temperature, the ultimate capacity for the sudden cooling specimens was less than that of gradually cooled specimens by about 10%.
The settlement evaluation for the jet grouted columns (JGC) in soft soils is a problematic matter, because it is influenced by the number of aspects such as soil type, effect mixture between soil and grouting materials, nozzle energy, jet grouting, water flow rate, rotation and lifting speed. Most methods of design the jet-grouting column based on experience. In this study, a prototype single and group jet grouting models (single, 1*2, and 2*2) with the total length and diameter were (2000 and 150 mm) respectively and clear spacing (3D) has been constructed in soft clay and subjected to vertical axial loads. Furthermore, different theoretical methods have been used for the estimation
In this paper the reinforced materials manufactured from steel continues fibers are used in Aluminum matrix to build a composite material. Most of researches concentrated on reinforced materials and its position in the matrix according to its size and distribution, and their effects on the magnitude of different kinds of the stresses, so this paper presents and concentrate on the geometrical shape of reinforced material and its effects on the internal stresses and strains on the composite strength using FEM as a method for analysis after loaded by certain force showing the deference magnitudes of stresses according to the different geometrical shapes of reinforced materials.
Background: Facial disfigurement can be the result of a congenital anomaly, trauma or tumor surgery, in many cases the prosthetic rehabilitation is indicated. Maxillofacial prosthetic materials should have desirable and ideal physical, aesthetic, and biological properties and those properties should be kept for long period of time in order to reach patient acceptance. Silicone elastomer are the most commonly used material for facial restoration because of its favorable properties mechanically and physically as the biocompatibility and good elasticity. Aim of this study: This study aimed to evaluate the effect of addition of Aluminum oxide (Al2O3) Nano fillers in different concentrations on tear strength and hardness of VST 50F room tempe
... Show MoreThe temperature influence on the fluorescence lifetime, quantum yields and non-radiative rate parameter or coumarin 460 dye dissolved in methanol was investigated in the temperature range (160-300 k). A single photon counting technique was used or measuring the fluorescence decay curves. A noticeable decrease of the fluorescence lifetime with increasing the temperature was observed. The non-radiative activation energy of 10.57 K.J. mole-1 was measured by the help of Arrhenius plot.
The high bounce activity according to the fosbery way is regarded as of the difficult sports concerning its way of training and perfection due to hard technique of its performance on one hand and because it depends on the player’s ability to overcome body weight resistance against the gravity. In addition to the strong ability to control the body posture when leaving the land and flying over the barrier. This activity needs to high plosion power at the moment of bouncing and this plosion depends on the period of bouncing, so the two researchers aimed to use a mechanical bouncing platform and an electronic one through several training by one foot and both feet in different directions and positions in order to reduce the time of bouncing an
... Show MoreMechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat
... Show MoreMany researchers tried to prevent or reduce moisture damage and its sensitivity to temperature to improving the performance of hot mix asphalt because it is decreasing the functional and structural life of fixable pavement due to the moisture damage had exposed to it.
The main objective of this study is to inspect the effect of (fly ash “3%, 6%, 12%”, hydrated lime”5%, 10%, 20%” and silica fumes”1%, 2%, 4%) referring to previous research by the net weight asphalt cement as a modified material on the moisture and temperature sensitivity of hot mix asphalt. This was done using asphalt from AL-Nasiria refinery with penetration grade 40-50, nominal maximum size (12.5) mm (surface course) of aggregate and on
... Show MoreStone columns are widely used globally due to theirversatility and relative wide applicability to treat different soil and foundation situations but much of the research undertaken to date has focused on their use in soft soils. In countries like Iraq the use of stone columns is still limited from a practical point of view, chiefly as many other soil conditions are commonly encountered. These include collapsible soils: soils that are prone to relatively rapid volume compressions (through collapse of metastable fabrics) that occur due to the action of load and/or increases in water content. Recent work has opened up the possibility to use stone columns in these soils by the use of encasement, thereby overcoming the impact of loss of lateral
... Show MoreTin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K