The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , water concentration and temperature. The output is average corrosion rate .The performance of the two training algorithms, gradient descent with momentum and Levenberg-Marquardt, are compared to select the most suitable training algorithm for corrosion rate model. The model can be used to calculate the average corrosion rate properties of carbon steel alloy as functions of Reynolds number, water concentration and temperature. Accordingly, the combined influence of these effective parameters and the average corrosion rate is simulated. The results show that the corrosion rate increases with the increase of temperature, Reynolds number and the increase of water concentration.
In this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeab
... Show MoreIraq has the second largest proven oil reserves in the world. According to oil experts, it is expected that the Iraq's reserves to rise to 200+ billion barrels of high-grade crude.
Oil is a strategic commodity for producing and exporting countries in general, and Iraq in particular, as demonstrated by the international experience that oil is an important means to achieve economic growth, an important tool in the overall economic, social and political development. It is also an important source of hard currency for any national economy and a means to connect the local economy and the global economy. In this paper we focus our attention on selecting the best regression model that explain the effect of human capita
... Show MoreThis contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as a
... Show MoreWater is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul
... Show MoreBackground: Gray-scale sonography is generally
considered as a first-line diagnostic tool for patient with
suspected acute cholecystitis. It is suggested by gallstones,
Murphy's sign, thickening of the gallbladder wall and bile
sludging, but the specificity of these sonographic findings
are not as high as their sensitivity. Blood flow of the
gallbladder wall is increased in acute inflammation.
Objective: To evaluate the sensitivity and specificity of
power Doppler sonography and compared with conventional
color Doppler and gray-scale sonography in diagnosing
patients with acute cholecystitis.
Type of the study: This was a cross sectional study.
Patients and methods: The study was conducted t
A new colorimetric-flow injection method has been developed and validated for the detection of Cefotaxime sodium in pharmaceutical formulations. This method stands out for its rapid and sensitive nature. The formation of a brown-colored complex between Cefotaxime sodium and the Biuret reagent in a highly alkaline environment serves as the basis for the detection. The intensity of this colored complex is measured using a custom-built Continuous Flow Injection Analyzer, enabling accurate quantification of Cefotaxime sodium. Optimization studies of the chemical and physical parameters such as dilution of Biuret reagent, effect of the medium basicity, flow rate, sample loop and others have been investigated. The calibration gra
... Show More