Visualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plotted versus Reynolds number. Proper empirical formulas are investigated to describe the behavior of vortex ring parameters and separation angle versus Reynolds number. Vortex growth history in the wake region of the cylinder is identified by analyzing the photographs extracted from the digital camera used for
photography purposes. Water velocity measurement in the upstream region and near the edge of the disk is conducted at different Reynolds number by measuring the length of Hydrogen bubble pulse streaks generated in the upstream region of the disk using electronic pulse generator circuit. Special electronic circuit is designed and fabricated to cut off the applied DC voltage. The calibration of the designed pulse generator is conducted using the proper oscilloscope device. The pictures extracted from the digital camera are used for analyzing the generated Hydrogen pulses.
The aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreIn the present study, the removal of zinc from synthetic waste water using emulsion liquid membrane extraction technique was investigated. Synthetic surfactant solution is used as the emulsifying agent. Diphenylthiocarbazon (ditizone) was used as the extracting agent dissolved in carbon tetrachloride as the organic solvent and sulfuric acid is used as the stripping agent. The parameters that influence the extraction percentage of Zn+2 were studied. These are the ratio of volume of organic solvent to volume of aqueous feed (0.5-4), ratio of volume of surfactant solution to volume of aqueous feed (0.2-1.6), pH of the aqueous feed solution (5-10), mixing intensity (100-1000) rpm, concentration of extracting agent (20-400) ppm, surfactant co
... Show MoreA new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show MoreThe presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreAbstract :
The Aims of this research is to describe the concept of risk, its type and method of measurement, and to clarify the impact of these risks on the expected cash flow statement and the preparation of the target cash flow statement that takes these risks into consideration. Because the local economic environment is exposed to many risks, Therefore, this list will be predictive, which will help the economic unit to make administrative decisions, especially decisions related to operational, investment and financing activities. Therefore, the research problem is based on the fact that most of the local economic units are the list of flows According to the actual basis and not according to the discretionary basis (bud
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreThe distribution of the intensity of the comet Ison C/2013 is studied by taking its histogram. This distribution reveals four distinct regions that related to the background, tail, coma and nucleus. One dimensional temperature distribution fitting is achieved by using two mathematical equations that related to the coordinate of the center of the comet. The quiver plot of the gradient of the comet shows very clearly that arrows headed towards the maximum intensity of the comet.
In this study, phytoplankton density, chlorophyll-a, and selected physico- chemical parameters were investigated in Erbil wastewater channel. The surveys were carried out monthly from May 2003 to April 2004. Samplings were established on three sites from headwaters to the mouth. The results showed that pH was in alkaline side of neutrality, with significant differences (P<0.05) between sites 1 and 3. TSS concentration decreased from site 1 toward site 2 (mean value, 80.15 to 25.79 mg.l-1). A clear gradual increase in mineral content (TDS) observed from site one of the channel towards the mouthpart. Soluble reactive phosphate has a concentration maximum mean value reached 48.4 µg.l-1 which is recorded in site 2. A high positive relat
... Show More