Preferred Language
Articles
/
joe-2145
Numerical Simulation of flow in pipe with cross jet effects
...Show More Authors

A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to verify the validity for present code, the flow behavior predicted by this code is compared with these of another studies and there is a good agreement is obtained 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Flow in Rectangular Duct with Different Obstruction Heights
...Show More Authors

       In this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Effects of Gas Flow on Spectral Properties of Plasma Jet Induced by Microwave
...Show More Authors

In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Sep 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Two Phase Flow in Large Diameter Pipe
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Steady and unsteady flow of non-newtonian fluid in curved pipe with triangular
...Show More Authors

This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid

View Publication Preview PDF
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Simulation to Study the Effects of Riemann Problems on the Physical Properties of the Astrophysics Gas Dynamics
...Show More Authors

In this work we run simulation of gas dynamic problems to study the effects of Riemann
problems on the physical properties for this gas.
We studied a normal shock wave travels at a high speed through a medium (shock tube). This
would cause discontinuous change in the characteristics of the medium, such as rapid rise in
velocity, pressure, and density of the flow.
When a shock wave passes through the medium, the total energy is preserved but the energy
which can be extracted as work decreases and entropy increases.
The shock tube is initially divided into a driver and a driven section by a diaphragm. The
shock wave is created by increasing the pressure in the driver section until the diaphragm bursts,
se

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Magnetohydrodynamic Influences on Casson Model for Blood Flow through an Overlapping Stenosed Artery
...Show More Authors

Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Effect of Recirculation Ratio on the Uniformity Flow in a High Area Ratio of Outlets Pipe at Different Entrance flow rates
...Show More Authors

The uniform flow distrbiution in the multi-outlets pipe highly depends on the several parameters act togather. Therefor, there is no general method to achieve this goal. The  goal of this study is to investigate the proposed approach that can provide significant relief of the maldistribution. The method is based on re-circulating portion of flow from the end of the header to reduce pressure at this region . The physical model consists of main manifold with uniform longitudinal section having diameter of 152.4 mm (6 in), five laterals with diameter of 76.2 mm (3 in), and spacing of 300 mm. At first, The experiment is carried out with conventional manifold, which is a closed-end. Then, small amount of water is allowed

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network
...Show More Authors

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Numerical Simulation of The Influence of Geometric Parameter on The Flow Behavior in a Solar Chimney Power Plant System
...Show More Authors

Numerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k -  model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Numerical Simulation of Unsaturated Soil Water Flow from a Trickle Point System, Considering Evaporation and Root Water Uptake
...Show More Authors

This research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o

... Show More
View Publication
Crossref