Preferred Language
Articles
/
joe-2138
Modeling and Simulation of Cadmium Removal from the Groundwater by Permeable Reactive Barrier Technology

The removal of cadmium ions from simulated groundwater by zeolite permeable reactive barrier was investigated. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. Many operating parameters such as contact time, initial pH of solution, initial concentration, resin dosage and agitation speed were investigated. The best values of these parameters that will achieved removal efficiency of cadmium (=99.5%) were 60 min, 6.5, 50 mg/L, 0.25 g/100 ml and 270 rpm respectively. A 1D explicit finite difference model has been developed to describe pollutant transport within a groundwater taking the pollutant sorption on the permeable reactive barrier (PRB), which is performed by Langmuir equation, into account. Computer program written in MATLAB R2009b successfully predicted meaningful values for Cd+2 concentration profiles. Numerical results show that the PRB starts to saturate after a period of time (~120 h) due to reduce of the retardation factor, indicating a decrease in percentage of zeolite functionality. However, a reasonable agreement between model predictions and experimental results of the

total concentration distribution of Cd2+ species across the soil bed in the presence of zeolite permeable reactive barrier was recognized.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 11 2023
Journal Name
Journal Of Chemical Technology & Biotechnology
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jul 21 2022
Journal Name
International Journal Of Health Sciences
Effect of transglutaminase on mechanical and barrier properties of edible films made from soybeen and why protein isolate

This study was aimed to study the effect of adding transglutaminase (TGase) on the mechanical and reservation properties of the edible films manufactured from soybean meal protein isolate (SPI) and whey protein isolate(WPI). The results showed an improvement in the properties with increase in the WPI ratios. Thickness of the SPI films amounted 0.097 mm decreased to 0.096 mm for the WPI: SPI films at a ratio of 2:1, when TGase was added decreased to 0.075 mm. While the tensile strength increased from 7.64 MPa for SPI films to eight MPa for the WPI: SPI films at a ratio of 2:1, when TGase was added increased to 11.04 MPa. Also, the elongation of the WPI: SPI films at a ratio of 2:1 presence of the TGase decreased to 40.6% compared wit

... Show More
Crossref
View Publication
Publication Date
Wed Dec 12 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
The performance of MnO<sub>2</sub>/graphite electrode for TOC removal from wastewater by indirect electrochemical oxidation process

Electrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.

Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Apr 06 2021
Journal Name
Journal Of Polymers And The Environment
Novel Sorbent of Sand Coated with Humic Acid-Iron Oxide Nanoparticles for Elimination of Copper and Cadmium Ions from Contaminated Water

Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c

... Show More
Crossref (9)
Crossref
View Publication
Publication Date
Wed Dec 31 2014
Journal Name
Journal Of Electrochemical Science And Technology
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Water Process Engineering
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Scopus (11)
Crossref (9)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Engineering And Applied Sciences
MODELING THE TRANSPORT OF CONTAMINANT BY WASHING PROCESS IN THE SANDY SOIL

The aim of this study is modeling the transport of industrial wastewater in sandy soil by using finite element method. A washing technique was used to remove the industrial wastewater from the soil. The washing technique applied with an efficient hydraulic gradient to help in transport of contaminant mass by advection. Also, the mass transport equation used in modeling the transport of industrial wastewater from soil includes the sorption and chemical reactions. The sandy soil samples obtained from Al-Najaf Governorate/Iraq. The wastewater contaminant was obtained from Al- Musyiebelectricity power plant. The soil samples were synthetically contaminated with four percentages of 10, 20, 30 and 40% of the contaminant and these percentages calc

... Show More
Publication Date
Sat May 28 2022
Journal Name
Egyptian Journal Of Chemistry
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Aug 07 2022
Journal Name
Chemical Methodologies
View Publication