This research presents experimental and theoretical investigation of 15 reinforced concrete spliced and nonspliced girder models. Splices of hooked dowels and cast in place joints, with or without strengthening steel plates were used. Post-tensioning had been used to enhance the splice strength for some spliced girders. The ANSYS computer program was used for analyzing the spliced and non-spliced girders. A nonlinear three dimensional element was used to represent all test girders. The experimental results have shown that for a single span girder using steel plate connectors in the splice zone has given a sufficient continuity to resist flexural stresses in this region. The experimental results have shown that the deflection of hooked dowels spliced girders is greater than that of non-spliced girder in the range of (17%-50%) at about 50% of the ultimate load which approximately corresponds to the serviceability limit state and the ultimate loads is less than that of non-spliced girder in the range of (12%-52%). For other spliced girders having strengthening steel plates at splices, the results have shown that the deflection of the spliced girder is less than that of non-spliced girder in the range of (2%-20%) at about 50% of the ultimate load and the ultimate loads for spliced girder is greater than that of nonspliced girder in the range of (1%-7%). The post-tensioned concrete girders have shown a reduction in deflection in the range of (26% - 43%) at a load of 50% of the ultimate load as compared with that of ordinary girders. Moreover, post-tensioning increases the ultimate loads in the range of (70% - 132%). The results obtained by using the finite element solution showed a good agreement with experimental results. The maximum difference between the experimental and theoretical ultimate loads for girders was in the range of (3-11%).
This paper studies the effects of stiffeners on shear lag in steel box girders with stiffened flanges. A three-dimensional linear finite element analysis using STAAD.Pro V8i program has been employed to evaluate and determine the actual top flange stress distribution and effective width in steel box girders. The steel plates of the flanges and webs have been modeled by four-node isoparametric shell elements, while the stiffeners have been modeled as beam elements. Different numbers (4, 8, and 15) for the steel stiffeners have been used in this study to establish their effects on the shear lag and longitudinal stresses in the flange. Using stiffeners reduced the magnitude of the top flange longitudinal stresses about 40%, but did
... Show MoreThis study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
DBN Rashid, Asian Quarterly: An International Journal of Contemporary Issue, 2018
A set of ten drug compounds containing an amino group in the structure were determined theoretically. The parameters were entered into a model to forecast the optimal values of practical (log P) medicinal molecules. The drugs were evaluated theoretically using different types of calculations which are AM1, PM3, and Hartree Fock at the basis set (HF/STO-3G). The Physico-chemical data like (entropy, total energy, Gibbs Free Energy,…etc were computed and played an important role in the predictions of the practical lipophilicity values. Besides, Eigenvalues named HOMO and LUMO were determined. Linearity was shown when correlated between the experimental data with the evaluated physical properties. The statistical analysis was used to analy
... Show MoreThe development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThe biological activities of some ternary nickel complexes with a Schiff base obtained from 4-dimethylaminobenzaldehyde and 2-aminophenol have been reported. The Schiff base ( HL1) acts as a primary ligand whereas, anthranilic acid ( HL2), 2-nitroaniline ( HL3), alanine ( HL4) and histidine ( HL5) act as secondary ligand or co-ligand. The anticancer activity of these compounds was studied against human colon carcinoma (HCT-116), human hepatocellular liver carcinoma (HEPG-2) and human breast carcinoma (MCF-7) cell lines. As per the results, the compounds were active against the cell lines. The antioxidant activity of the same compounds was evaluated using DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical scavenging and compared with ascorbic aci
... Show MoreThis research investigated the influence of water-absorbent polymer balls (WAPB) on reinforced concrete beams’ structural behavior experimentally. Four self-compacted reinforced concrete beams of identical geometric layouts 150 mm × 200 mm × 1,500 mm, reinforcement details, and compressive strength
The polymeric hydrogels composed of poly vinyl alcohol (m.wt 72000) and glutaraldehyde(5%,8% and 10%) , have been thermally prepared for the purpose of studying their swelling and drug release behavior . The swelling ratio was measured for all the hydrogel samples at 37°C, in three different media pH (1.2, 4.7 and 6.8) as a function of time. The results show that the maximum swelling ratios were arranged as follows :pH =6.8 > pH =4.7 > pH =1.2 hydrogels cross linked PVA showed a typical pH responsive behavior such as high pH has maximum swelling while low pH shows minimum swelling.