Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then ,on the basis of the priority of each child node , an appropriate transmission rate is assigned . The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority, Non Real-Time traffic class (NRT3 class). Simulation result shows that the proposed algorithm can effectively reduce congestion and enhance the transmission rate. Furthermore, the proposed algorithm can enhance Quality of Service (QoS) by achieve better throughput, and reduced the transmission delay and loss probability.
For many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for
... Show MoreNimodipine (NMD) is a dihydropyridine calcium channel blocker useful for the prevention and treatment of delayed ischemic effects. It belongs to class ? drugs, which is characterized by low solubility and high permeability. This research aimed to prepare Nimodipine nanoparticles (NMD NPs) for the enhancement of solubility and dissolution rate. The formulation of nanoparticles was done by the solvent anti-solvent technique using either magnetic stirrer or bath sonicator for maintaining the motion of the antisolvent phase. Five different stabilizers were used to prepare NMD NPs( TPGS, Soluplus®, HPMC E5, PVP K90, and poloxamer 407). The selected formula F2, in which Soluplus
has been utilized as a stabilizer, has a par
... Show MoreBackground: Several pathologies of the oral cavity have been associated with stress. Dental students need to gain assorted proficiencies as theoretical knowledge, clinical proficiencies, and interpersonal dexterity which is accompanied with high level of stress. Uric acid is the major antioxidant in saliva. The aim of this study is to assess the dental caries experience among dental students with different levels of dental environment stress in relation to physicochemical characteristics of whole unstimulated saliva.
Materials and Methods: the total sample is composed of 300 dental students (73 males, 227 female) aged 22-23 years old, from collage of dentistry / university of Baghdad, from the 4t
... Show MoreThe capital banking foundation stone upon which the bank in the practice of business activities, the more capital a good financial adequacy of the increased bank's ability to grant credit and expand the various activities and provide a safety element for depositors and other sources of funding to achieve profits and increase the trading volume of the shares, causing the rise the rate of return for the shares of banks and have the Central Bank as head of the banking system by issuing instructions capital increase banking, according to the requirements of economic development and increase gross domestic product by supporting investment projects that are financed through banks, the research aims to show the extent of the banks commitment to
... Show MoreBACKGROUND: Acute coronary syndrome (ACS) is the clinical manifestation of acutely diminished coronary arterial blood supply. The rate of increase of intraventricular pressure during isovolumetric contraction (left ventricular dP/dt) represents the rate of change of pressure during ejection. OBJECTIVE: The aim of this study is to evaluate the usefulness of the rate of increase of intraventricular pressure during isovolumetric contraction (dP/dt) in assessment of left ventricular function in patients with acute coronary syndrome and its relation to certain clinical and echocardiographic features. PATIENTS AND METHODS: The study is a cross sectional study including 50 patients with an established diagnosis of acute coronary syndrome. The
... Show MoreThree nematodes : Amidostomum acutum , Epomidiostomum uncinatum and Hadjelia truncata , were recovered from the gizzards of wintering mallard collected at two sites in central Iraq. A brief description of the parasites along with some notes on their infection rate, prevalence and discussion with the pertinent literature are provided.
This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being 0.66975075, 0.470
... Show More