Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then ,on the basis of the priority of each child node , an appropriate transmission rate is assigned . The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority, Non Real-Time traffic class (NRT3 class). Simulation result shows that the proposed algorithm can effectively reduce congestion and enhance the transmission rate. Furthermore, the proposed algorithm can enhance Quality of Service (QoS) by achieve better throughput, and reduced the transmission delay and loss probability.
Objective: The aim of this study is to find out the impact of life events upon onset of depression, to describe the
prevalence of life events among depressed patients.
Methodology: Retrospective a case-control study conducted in AL-Diwanyia Teaching Hospital, Psychiatric
Department on A non-probability (purposive sample) of (60) depressed patients and (60) of healthy person were matched
with them from general population. The data were collected through the use of semi-structured interview by
questionnaire, which consists of two parts (1) divide, section A. cover letter and B. Sociodemographic data which consists
of 9-items, (2) Life events questionnaire consists of 51-items distributed to six dimensions include, family
This study was conducted to evaluate the efficacy of 6 isolates of Pseudomonas fluorescens and Trichoderma harzianum and there combination against Fusarium tomato wilt disease caused by Fusarium oxysporum F.sp. Lycopersisi under green house condition .The isolates of bacteria (B3) and Trichoderma (T1) were found to be highly effective in reducing the disease incidence to 13.3% , 21% respectively , compared to control treatment (40%).Furthermore, disease severity was reduced to 28 and 30% respectively in comparison to control (90%) .Colonization of the roots (cfu /g fresh root weight )by the two isolates whether alon or together was extremely high . The combination treatment had a high ability in reducing disease incidenece and sev
... Show MoreReceive money laundering phenomenon of interest to researchers and scholars on different intellectual orientation of economic or political or other, as this process is gaining paramount importance in light of business and increase the number of banks in the province of Kurdistan of Iraq and Erbil in particular and in the presence of openness developments chaotic economic and there are no factors encourage money laundering operation because of the presence of the hidden economy and the weakness of the banking and legal measures to combat them, and on this basis there is a need to examine money laundering operation in the province of Arbil, to indicate the presence or absence of a money laundering operation in working in the provin
... Show MoreType 2 daibetes mellitus (T2DM) is a global concern boosted by both population growth and ageing, the majority of affected people are aged between (40- 59 year). The objective of this research was to estimate the impact of age and gender on glycaemic control parameters: Fasting blood glucose (FBC), glycated hemoglobin (HbA1C), insulin, insulin resistance (IR) and insulin sensitivity (IS), renal function parameters: urea, creatinine and oxidative stress parameters: total antioxidant capacity (TAC) and reactive oxygen species (ROS). Eighty-one random samples of T2DM patients (35 men and 46 women) were included in this study, their average age was 52.75±9.63 year. Current study found that FBG, HbA1C and IR were highly significant (P<0.01) inc
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show More