Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then ,on the basis of the priority of each child node , an appropriate transmission rate is assigned . The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority, Non Real-Time traffic class (NRT3 class). Simulation result shows that the proposed algorithm can effectively reduce congestion and enhance the transmission rate. Furthermore, the proposed algorithm can enhance Quality of Service (QoS) by achieve better throughput, and reduced the transmission delay and loss probability.
In this paper, the necessary optimality conditions are studied and derived for a new class of the sum of two Caputo–Katugampola fractional derivatives of orders (α, ρ) and( β,ρ) with fixed the final boundary conditions. In the second study, the approximation of the left Caputo-Katugampola fractional derivative was obtained by using the shifted Chebyshev polynomials. We also use the Clenshaw and Curtis formula to approximate the integral from -1 to 1. Further, we find the critical points using the Rayleigh–Ritz method. The obtained approximation of the left fractional Caputo-Katugampola derivatives was added to the algorithm applied to the illustrative example so that we obtained the approximate results for the stat
... Show MoreBased on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.
ان السبب الرئيسي لاختيار الموضوع كونه من الاساليب الادارية الحديثة التي تهدف الى انجاح المنظمة او الشركة المبحوثة, اذ تمثلت مشكلة البحث في ما دور الادارة بالرؤية المشتركة في تعزيز التسويق الابداعي بالشركة المبحوثة, يهدف البحث الى تسليط الضوء على مفهوم الادارة بالرؤية المشتركة وانعكاساتها على التسويق الابداعي للمنظمة ، باعتبارها منهج اداري حديث يسهم في تغيير وتجديد وتطوير واقع المنظمة المبحوثة( الشرك
... Show More