Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of expansive soil and showed that the heave can be reduced with increasing length and diameter of (GPA). The heave of (GPA-Foundation System) is controlled by three independent variables these are (L/D) ratio, (L/H) ratio and (B/D) ratio. The heave can be reduced by up to (38 %) when (GPA) is embedded in expansive soil layer at (L/H=1) and reduced by about (90 %) when (GPA) is embedded in expansive soil and extended to non- expansive clay (stable zone) at (L/H=2) at the same diameter of (GPA) and footing. An equation (mathematical mode1) was obtained by using the computer package (SPSS 17.0) for statistical analysis based on the results of finite element analysis relating the maximum heave of (GPA-Foundation System) as a function of the above mentioned three independent variables with coefficient of regression of (R2 = 92.3 %).
The aim of this study was to evaluate the effects of local application of bisphosphonate gel and recombinant human bone morphogenic protein 2 gel, on titanium dental implant stability and marginal bone level. Twenty-seven patients with upper and lower missing posterior tooth/teeth were included in the study with a total of 71 implants that were used for rehabilitation. The implants were randomly divided into 4 groups: 3 study groups and 1 control. Group1; local application of bisphosphonate gel, group 2; local application of recombinant human bone morphogenic protein 2 gel, group 3; local application of a mixed formula of both gels. The gel application was immediately preimplant insertion, group 4; implant insertion without application of a
... Show Moreon this research is to study the effect of nickel oxide substitution on the pure phases superconductor Tl0.5Pb0.5Ba2Can-1Cun-xNixO2n+3-δ (n=3) where x=(0,0.2,0.4,0.6,0.8.and 1.0). The specimens in this work were prepared with used procedure of solid state reaction with sintering temperature 8500C for 24 h .we used technical (4-prob)to calculated and the critical temperature Tc . The results of the XRD diffraction analysis showed that the structure for pure and doped phases was tetragonal with phases high-Tc phase (1223),(1212) and low-Tc phase (1202) and add
... Show MoreIn this study new derivatives of O-[2-{''2-Substituted Aryl (''1,''3,''4 thia diazolyl) ['3,'4b]-'1,'2,'4- Triazolyl]-Ethyl]-p- chlorobenzald oxime (6-11) have been synthesized from the starting material p-chloro – E- benzaldoxime 1. Compound 2 was synthesized by the reaction of p-chloro – E- benzaldoxime with ethyl acrylate in basic medium. Refluxing compound 2 with hydrazine hydrate in ethanol absolute afforded 3. Derivative 4 was prepared by the reaction of 3 with carbon disulphide, treated of compound 4 with hydrazine hydrate gave 5. The derivatives (6-11) were prepared by the reaction of 5 with different substitutes of aromatic acids. The structures of these compounds were characterized from their melting points, infra
... Show MoreSilver nanoparticles synthesized by different species
The reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as m
... Show MoreFour Co(II), (C1); Ni(II), (C2); Cu(II), (C3) and Zn(II), (C4) chelates have been synthesized with 1-(4-((2-amino- 5‑methoxy)diazenyl)phenyl)ethanone ligand (L). The produced compounds have been identified by using spectral studies, elemental analysis (C.H.N.O), conductivity and magnetic properties. The produced metal chelates were studied using molar ratio as well as sequences contrast types. Rate of concentration (1 ×10 4 - 3 ×10 4 Mol/L) sequence Beer’s law. Compound solutions have been noticed height molar absorptivity. The free of ligand and metal chelates had been applied as disperse dyes on cotton fabrics. Furthermore, the antibacterial activity of the produced compounds against various bacteria had been investigated. F
... Show MoreLimitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)‐17, receptor activator of nuclear factor‐κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable a
The compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show More