Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of expansive soil and showed that the heave can be reduced with increasing length and diameter of (GPA). The heave of (GPA-Foundation System) is controlled by three independent variables these are (L/D) ratio, (L/H) ratio and (B/D) ratio. The heave can be reduced by up to (38 %) when (GPA) is embedded in expansive soil layer at (L/H=1) and reduced by about (90 %) when (GPA) is embedded in expansive soil and extended to non- expansive clay (stable zone) at (L/H=2) at the same diameter of (GPA) and footing. An equation (mathematical mode1) was obtained by using the computer package (SPSS 17.0) for statistical analysis based on the results of finite element analysis relating the maximum heave of (GPA-Foundation System) as a function of the above mentioned three independent variables with coefficient of regression of (R2 = 92.3 %).
For design purposes, it`s necessary to know the compression rate of soil layers which might be happened when it`s subjected to effective stresses. Also, it`s essential to know the rate of flow through soil mass specially for the design of marine structures or earth embankment. These two important behavior could be predicted from the coefficient of consolidation (Cv) and the coefficient of permeability (k). This study shows the effect of cutback asphalt stabilization on Cv and k and other compressibility factors, the investigation was done for silty clay samples, specimens were prepared by mixing the soil with different percentage of asphalt from (0-10)% and subjected to one-dimensional consolidation test of 50mm diameter and 20mm height wer
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreThe aim of the present research is to illustrate γ-ray levels emitting from soil and bitumen producing from 238U, 232Th, and 40K along Abu-Jir Fault Zone. in the area extended from Al-Marj valley to Abu-Jir village using scintillometer device. Such study is important in environmental assessment to buildup data base about radioactivity. The concentration of natural radionuclides in the study area was determined to be occurring mostly in the clay minerals and organic matter. A high purity germanium spectrometer was used to detect the activity of these elements which ranged between 00.6±18.1- 1526±102, 0- 8.4±1.4, and 70.1±10.9- 328.2±73 in soil, and 28.2±5.6- 94±22.1, 0- 2.2±0.5, and 38.4±7.9- 70.1±10.9 in bitumen for 226Ra
... Show MoreThe present study aims to explore determinants of entrepreneurial behavior from perspective of social theory. It is based on model notions of (Tyler & Blader, 2003) which have focused on studying role of positively personal and social identity in motivating employees to practicing desired behavior which serves the organization in which they work. Based on these notions and previous literature, study model were built. This model explains the relationship between status judgments (perceived internal respect and perceived external prestige) and entrepreneurial behavior. It includes three main hypotheses. The first and second hypothesis are concerning the relationship between status judgmen
... Show MoreIn this study, epoxy was used as a matrix for composite materials, with E-glass fiber, jute and PVC fiber which was woven roving fiber, as reinforcement with volume fraction (Vf= 30%). There are two of prepared types of epoxy non reinforced, epoxy reinforced with E-glass, jute and PVC fibers including study of mechanical tests (Impact test, Bending test) different temperature and thermal conductivity and calculating the temperatures coefficient at different temperature. Results show that elastic modulus at rate values decrease to the increase of temperature and the impact strength, impact energy and thermal conductivity increase with increase temperature.
Computational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par
... Show MoreOver the last few years, there has been a worldwide increase in the use of composite materials for rehabilitation of deficient reinforced concrete structures. One important application of this technology is the use of Carbon Fiber Reinforced Polymer (CFRP) jacket to provide external confinement of reinforced concrete columns. Square concrete column specimens 100×100×1000 mm with concrete
compressive strength of about 30 and 50 MPa, steel fiber volume fraction 0%, 0.5%, 0.75%, and percentage of longitudinal reinforcement 2.01%, 3.14% and 4.52% were tested until failure in previous research. In this research seven tested columns were repaired and rehabilitated using one layer of CFRP flexible wraps and tested to determine their ultim
In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show MoreKaolin ceramic compacts sintered at various temperatures are investigated to correlate their microstructure with their acoustic parameters. Pulse velocity , attenuation coefficient, and quality factor values are ducts from ultrasonic attenuation measurements, moreover, the dynamical mechanics parameters( Young and shear modules) exhibited an explicit relationship with the acoustic quality factor.inturn are related to the microstructure which is heavily affected by the sintering mechanism.
Polymer electrolytes were prepared using the solution cast technology. Under some conditions, the electrolyte content of polymers was analyzed in constant percent of PVA/PVP (50:50), ethylene carbonate (EC), and propylene carbonate (PC) (1:1) with different proportions of potassium iodide (KI) (10, 20, 30, 40, 50 wt%) and iodine (I2) = 10 wt% of salt. Fourier Transmission Infrared (FTIR) studies confirmed the complex formation of polymer blends. Electrical conductivity was calculated with an impedance analyzer in the frequency range 50 Hz–1MHz and in the temperature range 293–343 K. The highest electrical conductivity value of 5.3 × 10-3 (S/cm) was observed for electrolytes with 50 wt% KI concentration at room
... Show More