Self-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, then 72 concrete cubes of (100*100*100) mm for different mixes were tested for compressive strength after 7 and 28 days of water curing. Results indicated that the combined effect of fineness
modulus and grading zone were clear on the passing ability and little effect of grading zone on flow ability and viscosity of fresh SCC properties. Compressive strength decreases with increasing F.M and no effect of grading zone for F.M higher than 2.90
The effects of reinforcing polymers with glass and graphite particles on enhancing their flexural properties are investigated. Five composites were fabricated using the same polymer matrix material with different volume fractions of reinforcement particles. They comprise glass particles and graphite particles each having volume fractions of 20% and 30% as well as a hybrid composite having 10% glass and 10% graphite. Three-point bending tests using a Universal Testing Machine were carried out on specimens of the above mentioned composites, as well as specimens of the polymer matrix material to determine their flexural properties. The experimental test results indicate that the flexural stiffness of all the composites wer
... Show MoreIn this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on is also introduced with the prove that a fuzzy seminorm on
... Show MoreIndium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
In this work the structural, electrical and optical Properties of CuO semiconductor films had been studied, which prepared at three thickness (100, 200 and 500 nm) by spray pyrolysis method at 573K substrate temperatures on glass substrates from 0.2M CuCl2•2H2O dissolved in alcohol. Structural Properties shows that the films have only a polycrystalline CuO phase with preferential orientation in the (111) direction, the dc conductivity shows that all films have two activation energies, Ea1 (0.45-0.66 eV) and Ea2 (0.055-.0185 eV), CuO films have CBH (Correlated Barrier Hopping) mechanism for ac-conductivity. The energy gap between (1.5-1.85 eV).
The study area soils suffer from several problems appear as tkhesvat and cracks in the roads and waterlogging which reduces the susceptibility of soil to withstand pressure, this study was conducted on the soil of the Karkh district based on field study that included (6) samples of soil physical analyses contain different ratios of (mud, sand, silt) as percentages (52%, 45%, 3 #) respectively, and liquidity limit rate (39%) Stroke rate plasticity was (20.6%) The rate coefficient of plasticity total (19.2%)0
Hot mix recycling of asphalt pavements is increasingly being used as one of the major rehabilitation methods by various highway agencies. Besides general savings in costs and energy expended, it also saves our natural resources and environment. Recycling process presents a sustainable pavement by using the old materials that could be reclaimed from the pavement; these materials could be mixed with recycling agents to produce recycled mixtures. The important expected benefits of recycling process are the conservation of natural resources and reduction of environmental impact. The primary objectives of this work are evaluating the Tensile and Shear Properties of recycled asphalt concrete mixtures, In addition to the
... Show MoreLead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is
... Show MorePoly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show MoreThis paper describes the geotechnical properties of Al-Ammarah soil of Ammarah city in Messan Governorate-southern parts of Iraq. Data and other information taken from numbers of geotechnical reports that performed under the supervision of Consulting Engineering Bureau of Baghdad University. This research is devoted to study the correlation between different physical properties such as (LL, PI, LI, n,t, e) with different mechanical properties such as (qu, cc, cs, SPT). The correlation is verified using simple regression analysis. From the regression results it was found that there is direct correlation between different parameters. By using the correlation-with some information- preliminary investigation stages and studies of any s
... Show More