This paper presents a numerical simulation for the combined effect of surface roughness and non-Newtonian behavior of the lubricant on the performance of misaligned journal bearing. The modified Reynolds equation to include the effect of non-Newtonian lubricant and bearing surface roughness has been formulated. The model accounts for the lubricant viscosity dependence on temperature and shear rate. In order to make a complete thermo-hydrodynamic analysis (THD) of rough surface misaligned journal bearing lubricated with non-Newtonian lubricant, the modified Reynolds equation coupled with the energy, heat conduction equations, the equation related the viscosity and temperature with appropriate boundary conditions have been solved simultaneously. The performance characteristics of the bearing were presented with different roughness parameter for the pressure, temperature, load carrying capacity, misalignment moment and friction force. The computer program prepared to solve the governing equations of the problem has been verified by comparing the results obtained through this work with that published by different workers. It has been found
that the results are in a good agreement .The results obtained in the present work showed that the surface roughness characteristics of opposing surfaces and its orientation play an important role in affecting the performance parameters of the bearing. It has been shown that the load in rough aligned journal bearing is higher than that in rough misaligned journal bearing for all surface roughness patterns (γ). An increase in load has been calculated and found to be 29.5% for the bearing with moving roughness while it becomes
32% for the bearing with stationary roughness.
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
In this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,
In this research, the program SEEP / W was used to compute the value of seepage through the homogenous and non-homogeneous earth dam with known dimensions. The results show that the relationship between the seepage and water height in upstream of the dam to its length for saturated soil was nonlinear when the dam is homogenous. For the non-homogeneous dam, the relationship was linear and the amount of seepage increase with the height of water in upstream to its length. Also the quantity of seepage was calculated using the method of (Fredlund and Xing, 1994) and (Van Genuchten, 1980) when the soil is saturated – unsaturated, the results referred to that the higher value of seepage when the soil is saturated and the lowe
... Show MoreHashimoto Thyroiditis (HT) is the most common autoimmune thyroid disease and the commonest cause ofhypothyroidism. C-reactive protein (CRP) is synthesized in hepatocyte in response to autoimmune disorders;strongly induced by IL-6. This study aimed to estimate serum IL-6 and CRP levels in autoimmune and non-autoimmune hypothyroidism. The present study included 60 Iraqi female hypothyroid patients divided to 30autoimmune and 30 non-autoimmune, with age ranged between 24-50 years and 30 healthy controls withage ranged between 27-52 years. Serum samples were collected from study groups. The levels of thyroidhormones (TSH, T4 and T3) were determined by using automated Chemiluminescence Immunoassay (CLIA)analysis system. Detection the levels of t
... Show MoreThe increasing use of polymeric materials in the daily life, leads to challenges in the processing industry to deliver high performance materials with affordable terms. However, new processing techniques lead to high costs. In order to reduce processing costs it is necessary to understand the non-Newtonian behavior of the polymers in their molten state to be able to simulate the processes before the construction of the plants starts. Here the shear thinning behavior of the viscosity of polymeric melts is essential. Thus, this paper deals with the experimental investigation of the thermo-rheological behavior of the viscosity of one of the most used polymers (Polypropylene) over a wide range of temperatures and shear rates. Furthermo
... Show MoreThe development of advanced lithium-sulfur (Li-S) batteries has gathered noteworthy attention due to their high theoretical energy density and potential for use in next-generation energy storage systems. This study focuses on the thermodynamic and dynamic analysis of advanced Li-S battery electrolytes using spectroscopic methods. By employing techniques such as nuclear magnetic resonance (NMR), Raman spectroscopy, and infrared (IR) spectroscopy, the research explores the interaction mechanisms between lithium ions and sulfur compounds within various electrolyte formulations. The results provide insights into the solvation structures, ion transport properties, and the stability of intermediates, which are significant for improving th
... Show MoreThe bandwidth requirements of the telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user.The passive optical
Soil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soi
... Show MorePre-breakdown phenomenon was investigated within the two, non-mixed dielectric liquids; transformation oil and cresol. Finite element technique was used to follow the initiation and growth of plasma channels (streamer discharge) within pin-plane configuration. That was done for different spacing between the pin-electrode and the liquid-liquid interface. Streamer growth model assumed that, the streamer initiation occurs at the region of the highest value of electric field. Our study shows that the streamer initiates at the tip of the pin and growths toward the other electrode. The study shows, too, that the streamer path controlled by the difference of permittivity of the two liquids and spacing distance of the liquid-liquid interface fro
... Show More