This paper presents a numerical simulation for the combined effect of surface roughness and non-Newtonian behavior of the lubricant on the performance of misaligned journal bearing. The modified Reynolds equation to include the effect of non-Newtonian lubricant and bearing surface roughness has been formulated. The model accounts for the lubricant viscosity dependence on temperature and shear rate. In order to make a complete thermo-hydrodynamic analysis (THD) of rough surface misaligned journal bearing lubricated with non-Newtonian lubricant, the modified Reynolds equation coupled with the energy, heat conduction equations, the equation related the viscosity and temperature with appropriate boundary conditions have been solved simultaneously. The performance characteristics of the bearing were presented with different roughness parameter for the pressure, temperature, load carrying capacity, misalignment moment and friction force. The computer program prepared to solve the governing equations of the problem has been verified by comparing the results obtained through this work with that published by different workers. It has been found
that the results are in a good agreement .The results obtained in the present work showed that the surface roughness characteristics of opposing surfaces and its orientation play an important role in affecting the performance parameters of the bearing. It has been shown that the load in rough aligned journal bearing is higher than that in rough misaligned journal bearing for all surface roughness patterns (γ). An increase in load has been calculated and found to be 29.5% for the bearing with moving roughness while it becomes
32% for the bearing with stationary roughness.
This research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreIncreasing the variety of products that are being designed with sculptured surfaces, efficient machining of these surfaces has become more important in many manufacturing industries. The objective of the present work is the investigation of milling parameters for the sculptured surfacesthat effecting of surface roughness during machining of Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The influence of the selected variables on the chosen characteristics have been accomplished using Taguchi design approach, also ANOVA had been utilized to evaluate the contributionsof each parameter on proc
... Show MoreElectrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreThe paper presents mainly the dynamic response of an angle ply composite laminated plates subjected to thermo-mechanical loading. The response are analyzed by analytically using Newmark direct integration method with Navier solution, numerically by ANSYS. The experimental investigation is to fabricate the laminates and to find mechanical and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus, longitudinal and transverse thermal expansion. Present of temperature could increase dynamic response of plate also depending on lamination angle, type of mechanical load and the value of temperature.
Background: Denture cleansing was an important step that could prevent the spread of infection and improve a patient's health, the durability of the dentures, and the overall quality of life; therefore, it was necessary to choose a suitable cleanser that, in addition to being effective, did not have an unfavorable effect on the qualities of the denture base resin itself when used for an extended period. For this purpose, this study aimed to evaluate the effect of tea tree oil (TTO) on Candida albicans adhesion and the surface roughness property of poly(methyl methacrylate) denture material after immersion in TTO. Methods: A total of 55 heat-cured acrylic resin specimens were used for C. albicans adherence and surface roughness tests. The
... Show MoreRotating fan shaft system was investigated experimentally and theoretically to study its dynamic performance. The type of oil used for the bearing was taken in consideration during the experimental program .Three types of oil were used, SAE 40, SAE 50 and degraded oil. During the experiments, the fan blades stagger angle was changed through angles (20˚, 30˚, 40˚, and 50˚). The shaft rotational speed also changed in the range of (0-3000 rpm). All these parameters have investigated for two cases (balanced and unbalanced fan). The performance parameters of the fan were found experimentally by measuring the fan, volume flow rate, Reynolds and Strouhal numbers, efficiency and pressure head. Analytical part was also represented to prepare
... Show MoreThe aim of this research is to investigation the optimization of the machining parameters (spindle speed, feed rate, depth of cut, diameter of cutter and number of flutes of cutter) of surface roughness for free-form surface of composite material (Aluminum 6061 reinforced boron carbide) by using HSS uncoated flat end mill cutters which are rare use of the free-form surface. Side milling (profile) is the method used in this study by CNC vertical milling machine. The purpose of using ANFIS to obtain the better prediction of surface roughness values and decreased of the error prediction value and get optimum machining parameters by using Taguchi method for the best surface roughness at spindle speed 4500 r.p.m, 920mm/rev feed rate, 0.6mm de
... Show MoreThis study calculated the surface roughness length (Zo), zero-displacement length (Zd) and height of the roughness elements (ZH) using GIS applications. The practical benefit of this study is to classify the development of Baghdad, choose the appropriate places for installing wind turbines, improve urban planning, find rates of turbulence, pollution and others. The surface roughness length (Zo) of Baghdad city was estimated based on the data of the wind speed obtained from an automatic weather station installed at Al-Mustansiriyah University, the data of the satellite images digital elevation model (DEM), and the digital surface model (DSM), utilizing Remote Sensing Techniques. The study area w
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show More