Theoretical and experimental investigations of the transient heat transfer parameters of constant heat flux source subjected to water flowing in the downward direction in closed channel are conducted. The power increase transient is ensured by step change increase in the heat source power. The theoretical investigation involved a mathematical modeling for axially symmetric, simultaneously developing laminar water flow in a vertical annulus. The mathematical model is based on one dimensional downward flow. The boundary conditions of the studied case are based on adiabatic outer wall, while the inner wall is subjected to a constant heat flux. The heat & mass balance equation derived for specified element of bulk water within the annulus and solved by using Laplace method to
determine the variation of bulk water temperature. The experimental investigation included a set of experiments carried out to investigate the temperature variation along the heat source for power increase transient of (5%, 10%, 15% and 20%) of its nominal value during and after reaching the steady state condition. Estimation of the boiling safety factor is predicted and compared with the theoretical values. Reliable agreement between experimental and theoretical approaches is reached. The later showed that the elapsed time required for the clad surface temperature to reach its steady state values after each transient is less than that related to bulk water temperature. New correlation for prediction of critical heat flux, CHF based on inlet water temperature and water mass flux are investigated and compared with CHF correlations obtained from previous researches. Specific recommendations concerned with preventive measured required to eliminate the effect of boiling crisis are concluded based on theoretical and experimental results related to transients setting times obtained from each case study.
Land surface temperature (LST) is crucial for determining the region's environmental quality because a significant temperature rise causes disasters, which cause environmental imbalance, reducing biodiversity and hastening desertification. In this study, remote sensing and geographic information systems were used to estimate the change in the LST of Babylon, Iraq, using two satellite images taken 20 years apart (2002, 2022). The temperature was extracted using a specific mathematical model in ArcMap10.8 software. The findings demonstrated a significant variation in temperatures and the concentration in various regions of Babylon between 2002 and 2022 and the relationship between LST and Normalized difference
... Show MoreRecently, there has been an increasing advancement in the communications technology, and due to the increment in using the cellphone applications in the diverse aspects of life, it became possible to automate home appliances, which is the desired goal from residences worldwide, since that provides lots of comfort by knowing that their appliances are working in their highest effi ciency whenever it is required without their knowledge, and it also allows them to control the devices when they are away from home, including turning them on or off whenever required. The design and implementation of this system is carried out by using the Global System of Mobile communications (GSM) technique to control the home appliances – In this work, an ele
... Show MoreIn this paper, the interplay among four population species is offered. The system consists of two competitive prey, predator and super predators. The application of the hypothesis of the Sotomayor theorem for local bifurcation around every equilibrium point is adopted. It is detected that the transcritical bifurcation could occur near most of the system's equilibrium points, while saddle-node and pitchfork bifurcation can not be accrued at any of them. Further, the conditions that guarantee the accruing Hopf bifurcation are carried out. Finally, some numerical analysis is illustrated to confirm the analytical results.
Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show More