The aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but the forth group was subjected to cryogenic treatment and the fifth group was subjected to cryogenic then tempered at (200 ºC) for one hour. Mechanical tests were carried out which includes, tensile, hardness, as well as microscopic examination. Yield strength, ultimate tensile strength and ductility for DP were correlated to martensite volume fraction. The yield and tensile strength (σy, σu) of (DP) for the three steels, were higher than those of normalized condition, and increased after cryogenic treatment. These values, for the three steel grades, decreased after tempering at temperature 200 ºC. Tempering of (DP) steel at 200ºC for one hour, after cryogenic treatment, causes the reappearance of yielding point for steels (C12D) and (C32D) while no such a change noticed in (C42D) steel. The results have shown that hardness of (DP) increased after cryogenic treatment for the three steel grades.
Hand-lay up method was used to prepare the samples made of epoxy (EP) as a matrix reinforced with chopped carbon fibers (CCF). The fatigue behavior of epoxy resin /chopped carbon fiber composites was studied with different weight percentage of chopped carbon fibers (2.5%,5%,7.5%,10%,12.5%). The fatigue test was carried out under alternate bending method, which was made by applying sinusoidal wave with constant displacement (15mm), stress ratio R=-1,and loading frequency 10Hz, which is believed to give a negligible temperature rise during the test. The results of the maximum stress, fatigue strength, fatigue limit and fatigue life of the tested composites are calculated from stress(S)-number of cycles(N) (S-N) curves.
It was shown that
Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
Background: During acrylic resin processing, the mold must be separated from the surface of the gypsum to prevent liquid resin from penetrating into the gypsum, and water from the gypsum seeping into the acrylic resin. For many years, tin foil was the most acceptable separating medium, and because it's difficult to apply, a tin-foil substitute is used. In this study, olive oil is used as an alternative to tin foil separating medium for first time, and evaluating its effect as a separating medium on some mechanical properties such as (indentation hardness and transverse strength) of acrylic resins denture base comparing it with those processed using tin-foil and tin foil substitute such as (cold mold seal) separating medium. Materials and M
... Show MoreObjectives: To Assess the Effect of Physical Status of Polycystic Ovarian Syndrome on Women in Reproductive Age,
To Find out the Relationship Between Polycystic Ovarian Syndrome and Women's Physical Health (Acne , Hirsutism ,
Weight Gain , Irregular Menstrual Period),&To Identify the Association of Physical Status to polycystic ovarian
syndrome and Some Socio Demographic Characteristic (Age ,Occupation & Obesity ), and Reproductive
Characteristic(Gravida ,Para ,Abortion &Menstrual Regularity).
Methodology :a descriptive analytical study was conduct on Non-probability (purposive sample) of (100)women who
suffering from polycystic ovarian syndrome in reproductive age in infertility counseling from three hospit
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
The effect of short range correlations on the inelastic longitudinal
Coulomb form factors for different states of J 4 , T 1with
excitation energies 3.553,7.114, 8.960 and 10.310 MeV in 18O is
analyzed. This effect (which depends on the correlation parameter )
is inserted into the ground state charge density distribution through
the Jastrow type correlation function. The single particle harmonic
oscillator wave function is used with an oscillator size parameter b.
The parameters and b are considered as free parameters, adjusted
for each excited state separately so as to reproduce the experimental
root mean square charge radius of 18O. The model space of 18O does
not contribute to the tra