In this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance tests for the system at different thermal conditions for hydraulic oil have been done , Simulation analysis for (EHSS) using Automation Studio package V5.2 have been done . Comparison was made between experimental work and simulation work .The experimental results show good performance for (EHSS) using simple (PID) controller at hydraulic oil temperature around (60 – 70 ) and good speed response and performance for hydraulic motor with constant rotation speed (700) rpm with different load disturbance applied on the hydraulic motor .
This work focused on principle of higher order mode excitation using in- line Double Clad Multi-Mode Mach-Zehnder Interferometer (DC-MM-MZI). The DC-MM-MZI was designed with 50 cm etched MMF. The etching length is 5cm. The tenability of this interferometer was studied using opt grating ver.4.2.2 and optiwave
ver. 7 simulator. After removing (25, 35, 45, 55) μm from MMF and immersing this segment of MMF with water bath contained distilled water and ethanol, in addition to, air. Pulsed laser source centered at 1546.7nm ,pulse width 10ns and peak power 1.33mW was propagated via this interferometer Maximum modes were obtained in case of air surrounded media which are 9800 and 25 um removed cladding layer, with peak power 49.800 m
This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreThe general aim of an experimental design in this paper was to estimate the different treatments effects on the responses by statistical methods. The estimates must be averting biases and the random errors minimized as much as possible. We used multivariate analysis of variance (MANOVA) to analyze design of experiments for several responses. In this paper, we provided three fertilizers (mineral, humic, micro-elements) applied on Yellow Maize experiment. This experiment was conducted by completely randomized design (CRD). We tested four responses (Chlorophyll in paper, total ton / ha, paper area / cm2 and plant height / cm) together to find significant test between them. The partial correlations are between Chlorophyll in paper and total ton
... Show MoreThis paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on th
... Show MoreThis paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the exp
... Show MoreInduced EF is among the most important of advanced oxidation processes (AOPs) It was employed to treat different kinds of wastewater. In the present review, the types and mechanism of induced EF were outlined. Parameters affecting this process have been mentioned with details. These are current density, pH, H2O2 concentration, and time. The application of induced electro Fenton in various sectors of industries like textile, petroleum refineries, and pharmaceutical were outlined. The outcomes of this review demonstrate the vital role of induced EF in treatment of wastewater at high efficiency and low cost in contrast with conventional technique
This paper deals with the design and implementation of an ECG system. The proposed system gives a new concept of ECG signal manipulation, storing, and editing. It consists mainly of hardware circuits and the related software. The hardware includes the circuits of ECG signals capturing, and system interfaces. The software is written using Visual Basic languages, to perform the task of identification of the ECG signal. The main advantage of the system is to provide a reported ECG recording on a personal computer, so that it can be stored and processed at any time as required. This system was tested for different ECG signals, some of them are abnormal and the other is normal, and the results show that the system has a good quality of diagno
... Show More