Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu concentration profiles. The model considers that: (1) electrical potential in the soil is constant with the time; (2) the effect of temperature is negligible; and (3) dissolution of soil constituents is negligible. The predicted pH profiles and transport of copper in sandy loam soil during electrokinetic remediation were found to reasonably agree with the bench-scale electro-kinetic
experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electro-kinetic remediation.
Abstract To ensure that the distribution system has safe drinking water. It is necessary to know the residual chlorine concentrations at various points in the network. A chlorine photometer device was used to measure twenty points taken every day for a week at a selected time in the distribution system. Both pressures and flows in the network were measured using bourdon gauge and Tuf-2000H Handheld Digital ultrasonic flow meters. WaterGEMS CONNECT Edition update one software was used to simulate the flow in the network. The Baghdad water department provided the data about the network, such as the lengths of pipes, the layout of the network, and pipes diameters. The network calibrated consists of 781 pipes of different lengths and 542 juncti
... Show MoreIn this study, the hydromorphodynamic simulation of a stretch of the Euphrates River was conducted. The stretch of the Euphrates River extended from Haditha dam to the city of Heet in Al-Anbar Governorate and it is estimated to be 124.4 km. Samples were taken from 3 sites along the banks of the river stretch using sampling equipment. The samples were taken to the laboratory for grain size analysis where the median size (D50) and sediment load were determined. The hydromorphodynamic simulation was conducted using the NACY 2DH solver of the iRIC model. The model was calibration using the Manning roughness, sediment load, and median particle size and the validation process showed that the error between th
... Show MoreThe concept of transitional justice is newly emerging, as it was mainly associated with addressing issues of serious breaches and abuses of human rights during conflicts and situations resulting from violence and the use of force in societies that are in the process of democratization, as transitional justice aims primarily to restore civil peace and rebuild institutions The state needs multidimensional justice: a judicial system that achieves the rule of law, corrective restoration of the wounds of the past, and a distributive characteristic of the redistribution of wealth.
يمثل الأخذ بالنظام الفيدرالي أطاراً تنظيمياً لشكل الدولة و مرحلة تحول مهمة في بنية الدولة العامة في مختلف مجالاتها، فالانتقال من المركزية في أدارة الشؤون العامة للدولة الى النمط الفيدرالي يمثل تحولا بنيوياً وسيكولوجياً ،حيث يكون هنالك توزيع مكاني - عمودي للسلطة والثروة بين الوحدات المكونة للدولة بشكل يختلف كليا عن الحالة المركزية، ونجد صور تنظيمية عديدة تتأسس ضمن اطار الفيدرالية العام ،
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.