Preferred Language
Articles
/
joe-2105
Modeling and Simulation of Copper Removal from the Contaminated Soil by a Combination of Adsorption and Electro-kinetic Remediation
...Show More Authors

Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu concentration profiles. The model considers that: (1) electrical potential in the soil is constant with the time; (2) the effect of temperature is negligible; and (3) dissolution of soil constituents is negligible. The predicted pH profiles and transport of copper in sandy loam soil during electrokinetic remediation were found to reasonably agree with the bench-scale electro-kinetic
experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electro-kinetic remediation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (29)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air, & Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Crossref (27)
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Iraqi Journal Of Science
Cleavage of mucin and salivary agglutinin by partiallypurified protease from native strain of Streptococcus mutansan67
...Show More Authors

Scopus (6)
Scopus
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Temperatures Distribution and Residual Stresses of High Melting Temperature Polymer
...Show More Authors

This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design and Simulation of L1-Adaptive Controller for Position Control of DC Servomotor
...Show More Authors

This paper presents L1-adaptive controller for controlling uncertain parameters and time-varying unknown parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of L1-adaptive controller for position control of studied servomotor has been examined and compared with another adaptive controller; Model Reference Adaptive Controller (MRAC). Robustness of both L1-adaptive controller and model reference adaptive controller to different input reference signals and different structures of uncertainty were studied. Three different types of input signals are taken into account; ramp, step and sinusoidal. The L1-adaptive controller ensured uniformly bounded

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 31 2013
Journal Name
Inventi Impact: Artificial Intelligence
SIMULATION OF IDENTIFICATION AND CONTROL OF SCARA ROBOT USING MODIFIED RECURRENT NEURAL NETWORKS
...Show More Authors

This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett

... Show More
View Publication
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
Forward and Reverse Osmosis Process for Recovery and Re-use of Water from Polluted Water by Phenol
...Show More Authors

The research aims to apply the novel forward osmosis (FO) process to recover pure water
from contaminated water. Phenol was used as organic substance in the feed solution, while sodium
chloride salt was used as draw solution. Membranes used in the FO process is the cellulose
triacetate (CTA) and polyamide (thin film composite (TFC)) membrane. Reverse osmosis process
was used to treatment the draw solution, the exterior from the forward osmosis process. In the FO
process the active layer of the membrane faces the feed solution and the porous support layer faces
the draw solution and this will show the effect of dilutive internal concentration polarization and
concentrative external concentration polarization.
In th

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mathematical Modeling of a Hollow Fiber Module Used in Pressure-Retarded Osmosis Process
...Show More Authors

   Pressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Diyala Journal Of Engineering Sciences
Design and Simulation of parallel CDMA System Based on 3D-Hadamard Transform
...Show More Authors

Future wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 20 2021
Journal Name
Iraqi Journal Of Laser
Design and Analysis of BIMD Double Clad MMF -MZI Using Optiwave Simulation
...Show More Authors

This work focused on principle of higher order mode excitation using in- line Double Clad Multi-Mode Mach-Zehnder Interferometer (DC-MM-MZI). The DC-MM-MZI was designed with 50 cm etched MMF. The etching length is 5cm. The tenability of this interferometer was studied using opt grating ver.4.2.2 and optiwave
ver. 7 simulator. After removing (25, 35, 45, 55) μm from MMF and immersing this segment of MMF with water bath contained distilled water and ethanol, in addition to, air. Pulsed laser source  centered at 1546.7nm ,pulse width 10ns and peak power 1.33mW was propagated via this interferometer Maximum modes were obtained in case of air surrounded media which are 9800 and 25 um removed cladding layer, with peak power 49.800 m

... Show More
View Publication Preview PDF