This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of the rigid beams after cooled in water were (2-5 %) more than rigid beam specimens cooled in air. Load-deflection curves indicate deleterious response to the fire exposure. Also, it was noticed that the maximum crack width increases with increasing fire temperature.
A New developed technique to estimate the necessary six elastic constants of homogeneous laminate of special orthotropic properties are presented in this paper for the first time. The new approach utilizes the elasto-static deflection behavior of composite cantilever beam employing the famous theory of Timoshenko. Three extracted strips of the composite plate are tested for measuring the bending deflection at two locations. Each strip is associated to a preferred principal axis and the deflection is measured in two orthogonal planes of the beam domain. A total of five trails of testing is accomplished and the numerical results of the stiffness coefficients are evaluated correctly under the contribution of the macromechanic
... Show MoreIn this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThis paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additional flexibil
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additio
... Show MoreIndustrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show MoreFrequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0, 0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their
... Show More