Modified asphalt is considered one of the alternatives to address the problems of deficiencies in traditional asphalt concrete, as modified asphalt addresses many of the issues that appear on the pavement layers in asphalt concrete, resulting from heavy traffic and vehicles loaded with loads that exceed the design loads and the large fluctuations in the daily and seasonal temperatures of asphalt concrete. The current study examined the role of polyphosphoric acid (PPA) as a modified material for virgin asphalt when it was added in different proportions (1%, 2%, 3%, 4%) of the asphalt weight. The experimental program includes the volumetric characteristics associated with the Marshall test, the physical properties, and the FTIR spectroscopy examination of virgin asphalt and polyphosphoric acid (PPA) modified asphalt. This study showed that mixtures with modified asphalt using polyphosphoric acid (PPA) by 3% achieved the typical Marshall properties at the optimal asphalt content of 4.8%, recording a 10% decrease in the optimum asphalt content for the mixtures made with virgin (unmodified) asphalt, whose proportion was 4.9% is the optimum asphalt content. PPA is available in the local markets and is considered cheaper than polymers. It is also regarded as economical as it reduces the optimum content of asphalt.
This study aims to show, the strength of steel beam-concrete slab system without using shear connectors (known as a non-composite action), where the effect of the friction force between the concrete slab and the steel beam has been investigated, by using finite element simulation.
The proposed finite element model has been verified based on comparison with an experimental work. Then, the model was adopted to study the system strength with a different steel beam and concrete slab profile. ABAQUS has been adopted in the preparation of all numerical models for this study.
After validation of the numerical models, a parametric study was conducted, with linear and non-linear Regression analysis. An equation re
... Show MoreIn this study, novel Schiff base complexes with Zn(II) and Co(II) ions were successfully synthesized. The malonic acid dihydrazide was converted into the Schiff base ligand by combining it with 1-hydroxy-2-naphthaldehyde, and the last step required reacting it with the appropriate metal(II) chloride to produce pure target complexes. The generated complexes were thoroughly characterized using FTIR, 1H-NMR, 13C-NMR, GC-mass, and UV-Vis spectroscopies. In order to photo-stabilize polystyrene (PS) and reduce the photodegradation of its polymeric chains, these chemicals have been used in this work. The efficiency of the generated complexes as photo-stabilizers was evaluated using a variety of techniques, including FTIR, weight loss, visc
... Show MoreA biological experiment was done in the green house of Biology Department, college of Education (Ibn – AL haitham), Baghdad university, in pots (2Kg size), for growth season 2009, to study the effect of two concentrations of gibberellic acid which was (50) and (100) ppm, and two levels of Diamonium phosphate fertilizer which was(0.16) and (0.32) gm/2kg pot which equal (40) and (80) kg/d, in growth of root of one lentil cultivar (AL- Baraka), upon compeletely randomized design with three replications. The results showed that there was a significant increase in (root’s length, volumes of roots, fresh and dry weights, number of nodules, and the percents of nitrogen and protein), by increasing of gibberellic acid concentr
... Show MoreBidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.
Bidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through Moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.