Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within the tested range, was found to be almost equal to the width of foundation. Therefore, under this depth, the soil was reinforced with geogrid
and geotextile. It can be shown that (Collapse Settlement Reduction Factor) increases to (72%) when using two layers of geogrid and one layer of geotextile under depth of replacement equal to the width of footing. In addition, the results showed that the bearing capacity increases to (1.5-2.0) time under concentric loads and (2.5-3) under eccentric loads after replacement and reinforcement of gypseous soil
This study is conducted to investigate the validity of using different levels of Rustumiya sewage water for irrigation and their effects on corn growth and some of the chemical properties of the soil such as electrical conductivity and soil pH in extract soil paste , the micro nutrient content in soil and plant which are ( Fe , Mn , Zn , Cu , Cd , Pb ). Three levels of sewage water ( 0 , 50 , 100 )% in two stages were used ,the three levels of wastewater ( without soil fertilization ) were used in the first stage , Where 80 Kg N /D+50Kg P2O5 /D was added to the soil as fertilizer in the control (0%) treatment and 40 Kg N/D+25Kg P2O5/D were added to 50 and 100% levels in the second stage .Corn seeds were planted in 12kg plastic pots in Com
... Show MoreThe current study was conductedas a pot experiment to determine the effect of soil texture on biological nitrogen fixation (BNF) of six most efficient local isolates, specified, of Bradyrhizobium. Cowpea (Vignaunguiculata L.), as a legume host crop, was used as a host crop and 15N dilution analysis was used for accurate determination of the amount of N biologically fixed under experimental parameters specified. Soils used are clay loam, sandy clay loam and sandy loam. Biological Nitrogen Fixation (BNF), in different soil textural classes, was as in the following order: medium texture soil > heavy texture soil > light textured soil. Statistical analysis showed that there is a significant variation in BNF % among six Iraqi isolates in the th
... Show MoreThe current study included the isolation, purification and cultivation of blue-green alga Oscillatoria pseudogeminata G.Schmidle from soil using the BG-11liquid culture medium for 60 days of cultivation. The growth constant (k) and generation time (G) were measured which (K=0.144) and (G=2.09 days).
Microcystins were purified and determined qualitatively and quantitatively from this alga by using the technique of enzyme linked immunosorbent assay (Elisa Kits). The alga showed the ability to produce microcystins in concentration reached 1.47 µg/L for each 50 mg DW. Tomato plants (Lycopersicon esculentum) aged two months were irrigated with three concentrations of purified microcystins 0.5 , 3.0 and 6.0
... Show MoreThe study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring
Hand-lay up method was used to prepare the samples made of epoxy (EP) as a matrix reinforced with chopped carbon fibers (CCF). The fatigue behavior of epoxy resin /chopped carbon fiber composites was studied with different weight percentage of chopped carbon fibers (2.5%,5%,7.5%,10%,12.5%). The fatigue test was carried out under alternate bending method, which was made by applying sinusoidal wave with constant displacement (15mm), stress ratio R=-1,and loading frequency 10Hz, which is believed to give a negligible temperature rise during the test. The results of the maximum stress, fatigue strength, fatigue limit and fatigue life of the tested composites are calculated from stress(S)-number of cycles(N) (S-N) curves.
It was shown that
Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.