Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within the tested range, was found to be almost equal to the width of foundation. Therefore, under this depth, the soil was reinforced with geogrid
and geotextile. It can be shown that (Collapse Settlement Reduction Factor) increases to (72%) when using two layers of geogrid and one layer of geotextile under depth of replacement equal to the width of footing. In addition, the results showed that the bearing capacity increases to (1.5-2.0) time under concentric loads and (2.5-3) under eccentric loads after replacement and reinforcement of gypseous soil
Background: Mother-infant bonding is an important psychological step postpartum and disturbed relationship may carry dramatic consequences as a psychological disorder which may affect the periodontal health of the mother. The aim of the present study was to assess the effect of the postpartum Mother-infant bonding on their periodontal condition. Materials and Methods: Mothers in the postpartum period with age range 20-35 years were subjected to postpartum Bonding Questionnaire (PBQ). Periodontal health status was assessed by measuring probing pocket depth and clinical attachment level. Results: The mean values of both probing pocket depth (PPD) and clinical attachment loss (CAL) were higher among disordered mothers than mothers with normal
... Show MoreA microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different
... Show MoreFlaxseed from the flax plant (Linum usitatissimum), which has been cultivated for domestic use since prehistoric times. This study aims to investigate presence of antibacterial effect of flaxseed extract against selected oral pathogen in-vitro.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
This paper aims at studying the illocutionary speech acts: direct and indirect to show the most dominant ones in a presidential speech delivered by the USA president. The speech is about the most critical health issue in the world, COVID-19 outbreak. A descriptive qualitative study was conducted by observing the first speech delivered by president Trump concerning coronavirus outbreak and surveying the illocutionary acts: directive, declarative, commissive, expressive, and representative. Searle's (1985) classification of illocutionary speech acts is adopted in the analysis.
What are the main types of the illocutionary speech acts performed by Trump in his speech?; Why does
... Show MoreAbstract: Despite the distinct features of the continuous wave (CW) Terahertz (THz) emitter using photomixing technique, it suffers from the relatively low radiation output power. Therefore, one of effective ways to improve the photomixer emitter performance was using nanodimensions electrodes inside the optical active region of the device. Due to the nanodimension sizes and good electrical conductivity of silver nanowires (Ag-NWs), they have been exploited as THz emitter electrodes. The excited surface plasmon polariton waves (SPPs) on the surface of nanowire enhances the incident excitation signal. Therefore, the photomixer based Ag-NW compared to conventional one significantly exhibits higher THz output signal. In thi
... Show More