Equilibrium Moisture sorption isotherms are very important in drying and storage analysis. Experimental moisture equilibrium data (adsorption and desorption) of Aspirin were determined using the static method of saturated salt solutions and that by exposing the material to different conditions of temperatures and water activities. Three different temperatures (25, 30, 40Cº) and water activities in the range of (6.3- 83.6%) were used. The results showed that the equilibrium moisture content increased with the increase in water activity at any temperature and decreased with temperature increase at constant water activity. The water activity increases with increasing in temperature when moisture content was kept constant. The sorption isotherm curves are of type II according to Brunauer`s classification. The hysteresis effect was not distinctly expressed only for equilibrium sorption
values of Aspirin at 25ºC. The experimental results were fitted to two sorption models (GAB and Henderson).The average relative deviation between the experimental and calculated data were obtained to select the best model. The GAB and Henderson models, obtaining values of 3.54 and 1.42 % average relative deviation and coefficient of regression of 0.98 and 0.977 respectively. The Henderson model was found to be the best fit out of the two models to predict the sorption behavior of Aspirin.
Gas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mix
Aspirin and clopidogrel are considered the most important oral platelets aggregation inhibitors. So it is widely used for treatment and prophylaxis of cardiovascular and peripheral vascular diseases related to platelets aggregation .In this study aspirin and clopidogrel were formulated together as floating bilayer tablet system. Three different formulas of 75 mg aspirin were prepared by wet granulation method as immediate release layer; different disintegrants used to achieve rapid disintegration. Formula with crosscarmellose as disintegrant achieve rapid disintegration was selected for preparation of bilayer tablet.
Different formulas of 75 mg clopidogrel were prepared as sustained release floating layer by wet granulation (effe
... Show MoreThe filler in the asphalt mixture is essential since it plays a significant role in toughening and stiffening the asphalt. Changes in filler type can lead the asphalt mixtures to perform satisfactorily during their design life or degrade rapidly when traffic and environmental effects are considered. This study aims to assess the impact of filler types such as limestone dust (LS) and hydrated lime (HL) on Marshall characteristics and moisture damage in asphalt mixtures. Three different percentages of HL were employed in this study to partially replace the LS mineral filler: 1.5, 2.0, and 2.5% by aggregate weight. Furthermore, a control mixture was created with 7% LS by overall aggregate weight for the wearing course layer. The Marsha
... Show MoreDurability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marsh
... Show More