Preferred Language
Articles
/
joe-2089
System Identification Algorithm for Systems with Interval Coefficients
...Show More Authors

In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
The Necessary and Sufficient Optimality Conditions for a System of FOCPs with Caputo–Katugampola Derivatives
...Show More Authors

The necessary optimality conditions with Lagrange multipliers  are studied and derived for a new class that includes the system of CaputoKatugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left CaputoKatugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time  and the final state  are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Radiation Research And Applied Sciences
Determination of muon absorption coefficients in heavy metal elements
...Show More Authors

View Publication
Crossref (2)
Clarivate Crossref
Publication Date
Fri Oct 14 2016
Journal Name
International Journal For Computational Methods In Engineering Science And Mechanics
Simultaneous determination of time-dependent coefficients and heat source
...Show More Authors

View Publication
Scopus (16)
Crossref (12)
Scopus Crossref
Publication Date
Fri Apr 30 2010
Journal Name
Journal Of Applied Computer Science & Mathematics
Image Hiding Using Magnitude Modulation on the DCT Coefficients
...Show More Authors

In this paper, we introduce a DCT based steganographic method for gray scale images. The embedding approach is designed to reach efficient tradeoff among the three conflicting goals; maximizing the amount of hidden message, minimizing distortion between the cover image and stego-image,and maximizing the robustness of embedding. The main idea of the method is to create a safe embedding area in the middle and high frequency region of the DCT domain using a magnitude modulation technique. The magnitude modulation is applied using uniform quantization with magnitude Adder/Subtractor modules. The conducted test results indicated that the proposed method satisfy high capacity, high preservation of perceptual and statistical properties of the steg

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
International Journal Of Scientific & Engineering Research
Horizontal Fragmentation for Most Frequency Frequent Pattern Growth Algorithm
...Show More Authors

Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.

View Publication Preview PDF
Publication Date
Mon Jan 02 2017
Journal Name
European Journal Of Scientific Research
Fast approach for arabic text encryption using genetic algorithm
...Show More Authors

As s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res

... Show More
Publication Date
Sun Jan 01 2012
Journal Name
International Journal Of Cyber-security And Digital Forensics (ijcsdf)
Genetic Algorithm Approach for Risk Reduction of Information Security
...Show More Authors

Nowadays, information systems constitute a crucial part of organizations; by losing security, these organizations will lose plenty of competitive advantages as well. The core point of information security (InfoSecu) is risk management. There are a great deal of research works and standards in security risk management (ISRM) including NIST 800-30 and ISO/IEC 27005. However, only few works of research focus on InfoSecu risk reduction, while the standards explain general principles and guidelines. They do not provide any implementation details regarding ISRM; as such reducing the InfoSecu risks in uncertain environments is painstaking. Thus, this paper applied a genetic algorithm (GA) for InfoSecu risk reduction in uncertainty. Finally, the ef

... Show More
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Stability of Back Propagation Training Algorithm for Neural Networks
...Show More Authors

In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained

View Publication Preview PDF
Crossref