Preferred Language
Articles
/
joe-2087
EXPERIMENTAL INVESTIGATION OF INDIVIDUAL EVACUATED TUBE HEAT PIPE SOLAR WATER HEATING SYSTEMS
...Show More Authors

lar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Baghdad, Iraq. Experiments were carried out with no load, intermittent and continuous load conditions. Some tests, at no load, were carried out with and without reflectors. The overall system efficiency was found to improve with load conditions by a maximum of 55%. The system employing an 1800 mm evaporator length and 22 mm heat pipe (HP7) showed the best performance by higher water temperatures, overall useful energy gain and efficiency at various load conditions. System performance was predicted theoretically using electrical analogy derived from an energy balance. An agreement of within 14% was obtained between theoretical and experimental values.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Scientific Review Engineering And Environmental Studies (srees)
Testing the performance of a solar energy cooling system in Baghdad city
...Show More Authors

Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
Numerical Study of Fluid Flow and Heat Transfer Characteristics in Solid and Perforated Finned Heat Sinks Utilizing a Piezoelectric Fan
...Show More Authors

Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Apr 04 2024
Journal Name
Iraqi Journal Of Applied Physics
Experimental Investigation on Mechanical and Physical Properties of Hybrid Plastic/Wood Composites as Echo-friendly Structural and Decorative Materials
...Show More Authors

This study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu

... Show More
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Engineering
Experimental Study of Optimum Chilled Water Distribution Configuration in Air Conditioning Terminal Unit Using RSM Technique
...Show More Authors

The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Simulation of the Thermal Performance of a Tubular Solar Air Heater
...Show More Authors

In this work, a flat-plate solar air heater (FSAH) and a tubular solar air heater (TSAH) were designed and tested numerically. The work investigates the effect of increasing the contact area between the flowing air and the absorber surface of each heater and predicts the expected results before the fabrication of the experimental rig. Three-dimensional two models were designed and simulated by the ANSYS-FLUENT 16 Program. The solar irradiation and ambient air temperature were measured experimentally on December 1st 2022, at the weather conditions of Baghdad City- Iraq, at three air mass flow rates, 0.012 kg/s, 0.032 kg/s, and 0.052 kg/s. The numerical results showed the advantage in the thermal performance of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 03 2025
Journal Name
Journal Of Molecular Structure
Synergistic design of carbazole-bearing (D–π)₂-D–π–A architectures for dye-sensitized solar cells: Experimental and theoretical evaluations
...Show More Authors

Publication Date
Sat Jan 12 2013
Journal Name
International Journal Of Advanced Research In Engineering And Technology (ijaret)
FABRICATION OF AGAL/SI SOLAR CELL
...Show More Authors

The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.

Preview PDF
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector
...Show More Authors

A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherw

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Numerical Simulation of Thermal-Hydrodynamic Behavior within Solar Air Collector
...Show More Authors

Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Numerical Assessment of Pipe Pile Axial Response under Seismic Excitation
...Show More Authors

In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode

... Show More
View Publication Preview PDF
Crossref