Flutter is a phenomenon resulting from the interaction between aerodynamic and structural dynamic forces and may lead to a destructive instability. The aerodynamic forces on an oscillating airfoil combination of two independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Theodorsen functions. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-ection theory relating to the steady case. The mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. The solution is of a simple form and
is expressed by means of an auxiliary parameter K. The use of finite element modeling technique and unsteady aerodynamic modeling with the V-G method for flutter speed prediction was used on a fixed rectangular and tapered wing to determine the flutter speed boundaries. To build the wing the Ansys 5.4 program was used and the extract values were substituted in the Matlab program which is designed to determine the flutter speed and then predicted the various effects on flutter speed. The program gave us approximately identical results to the results of the referred researches. The following wing design parameters were investigated skin shell thickness, material properties, cross section area for beams, and changing altitude. Results of these calculations indicate that structural mode shape variation plays a significant role in the determination of wing flutter boundary.
The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method and the Standard Bayes method with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show MoreGas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates
New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show MoreL-Phenylalanine amino acid was condensed with 2-hydroxybezaldehyde to give the Schiff base sodium 2-(2-hydroxybenzylideneamino)-3-phenylpropanoate, which was used as a precursor [NaHL]. The precursor was reacted with 1,2-dichloroethane to give the Schiff base sodium 2,2'-(2,2'-(ethane-1,2diylbis(oxy))bis(2,1-phenylene))bis(methan-1-yl-1-ylidene)bis(azan1-yl-1-ylidene)bis(3-phenyl propanoate), which was used as a ligand [Na2L], in complexation with some metal (II) chloride MCl2, where [M= Co(II), Ni(II), Cu(II) and Zn(II)], to give [M(L)] complexes. The [Na2L] ligand and All complexes were characterized by spectroscopic methods, [FTIR, UV-Vis, atomic absorption], melting point, chloride content, conductivity and magnetic susceptibi
... Show MoreDerivational word formation process is one of the most substantial linguistic procedures that solves many problems in the translation of the language new vocabulary and helps to comprehend the smallest language component that not simply semantically and structurally explain the elements of both Russian and Arabic but also enables translators to comprehend the derivational method procedures of both languages. It also reveals the structural aspects of translation equivalences, cognitive and semantic foundations of translation. The rapid development of languages and the appearance of a new vocabulary like ṭabaʿa "print → ṭābiʿat "printer", kataba "to write" → kātib → kātibat, rafaʿa "to raise" → rāfiʿat "a crane" d
... Show More