Flutter is a phenomenon resulting from the interaction between aerodynamic and structural dynamic forces and may lead to a destructive instability. The aerodynamic forces on an oscillating airfoil combination of two independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Theodorsen functions. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-ection theory relating to the steady case. The mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. The solution is of a simple form and
is expressed by means of an auxiliary parameter K. The use of finite element modeling technique and unsteady aerodynamic modeling with the V-G method for flutter speed prediction was used on a fixed rectangular and tapered wing to determine the flutter speed boundaries. To build the wing the Ansys 5.4 program was used and the extract values were substituted in the Matlab program which is designed to determine the flutter speed and then predicted the various effects on flutter speed. The program gave us approximately identical results to the results of the referred researches. The following wing design parameters were investigated skin shell thickness, material properties, cross section area for beams, and changing altitude. Results of these calculations indicate that structural mode shape variation plays a significant role in the determination of wing flutter boundary.
The aerodynamic and elastic forces may cause an oscillation of the structure such as the high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight and failure may occur at a speed called flutter speed. In this work, analytical and numerical investigations of flutter limits of thin plates have been carried out. The flutter speed of rectangular plates were obtained and compared with some published results. Different design parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. It was found that the structural mode shape plays an important role in the determination of the flutter speed and the coupling between the bending and torsional mode is the main
... Show MoreAeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution) as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge) was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with
... Show MoreThe paper presents an investigation to the flutter speed of composite wing for different ply orientation. Structurally the composite wing was idealized as a composite beam load carrying structure. Theodorsen’s expression was used to get the 2- dimension unsteady lifting force and pitching moment in the limit of incompressible flow and subsonic speed which were integrated over the wing span. A free vibration analysis was first carried out to get the natural frequencies and mode shapes .The velocity-damping (V-g) method was used to calculate the flutter speed and the flutter frequency. A wing of unmanned aerial vehicle was manufactured from woven glass and polyester resin where the flutter speed was calculated experimentally by the wind
... Show MoreA numerical method for the calculation of the three-dimensional wake rollup behind symmetric wings with ground effect and its aerodynamic characteristics for steady low subsonic flow have been developed. A non-planar quadrilateral vortex-ring method with vortex wake relaxation iterative scheme for lifting surfaces is obtained. A computer program was build to treat wings with breaks, span wise trailing edge flaps, local dihedral angle, camber, twist and ground effect. Forces and moments are obtained from vector product of local velocity and vortex strength multiplied by density. The program has been validated for a number of configurations for which experimental data is available. Good agreement has been obtained for these configurations. Al
... Show MoreThe application of low order panel method with the Dirichlet boundary condition on complex aircraft configuration have been studied in high subsonic and transonic speeds. Low order panel method has been used to solve the case of the steady, inviscid and compressible flow on a forward swept wing – canard configuration with cylindrical fuselage and a vertical stabilizer with symmetrical cross section. The aerodynamic coefficients for the forward swept wing aircraft were calculated using measured wake shape from an experimental work on same model configuration. The study showed that the application of low order panel method can be used with acceptable results
An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreThis research, the author deals with a number of topics, including: What is interpretation?, the difference between exegesis and I interpretation of the Quran, the meaning of interpretation in the term, and the meaning of interpretation in the terminology of the people of interpretation, It deals with then, he demonstrates the interpretation and reasoning meanings of language, and the need of Muslims to interpret the Quran, and limitations of the use of interpretation and exegesis, On the interpretation of opinion and when it began, and the need of Muslims to explain, Finally he discusses the ways of interpretation, and the conditions to be provided in the interpreter.
The huge magnetic fields of neutron star cause the nuclei of the stellar surface to form a tightly bound condensed layer. In this research some characteristics of polar gap and magnetosphere enclosed the star according to Sturrock Model were illustrated, positrons move out along the open field lines, and electrons flow to the stellar surface as in the related to Sturrock model. The magnetic field within polar gap areas, which is defined by the Irvin Radius (RL) decreases due to the expansion of the polar, resulting from the physical motion of the accreted material. The values of height gap at different distances from the star were estimated. The obtained results improve the most energetic positrons those with E? Emax radiate away their ener
... Show MoreAbstract This study aims to discover the ways that adopted by extremism to expand to new geographical areas, in order to spread out its ideology, which led to create new geo-strategic zone, aims to recognize ISIS’s strategy to move towards new geographic locations and the motivations behind these transformations, the study also analyses all aspects of this strategy, the group’s relationship with other terrorist groups in these areas and limits of the competition between them. The study also highlights the factors that have led ISIS to move to new geographical areas and its techniques to control them.
Quality control is an effective statistical tool in the field of controlling the productivity to monitor and confirm the manufactured products to the standard qualities and the certified criteria for some products and services and its main purpose is to cope with the production and industrial development in the business and competitive market. Quality control charts are used to monitor the qualitative properties of the production procedures in addition to detecting the abnormal deviations in the production procedure. The multivariate Kernel Density Estimator control charts method was used which is one of the nonparametric methods that doesn’t require any assumptions regarding the distribution o
... Show More