Preferred Language
Articles
/
joe-2074
Genetic Algorithm Optimization Model for Central Marches Restoration Flows with Different Water Quality Scenarios

A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and pH).The objective function adopted in the optimization model is in a form the sum of difference in each of the 5 water quality parameters, resulting from the
mixing equation of the waters of the rivers, from the accepted limits of these parameters , weighted by a penalty factor assigned for each water quality parameter according to its importance. The adopted acceptable limits are 1500,1000, 6,4 and 7, while the penalty factors are 1,0.8,0.8,0.8,and 0.2 for EC,TDS,BOD,DO,and pH respectively. The constraints adopted on the decision variables which the monthly flows of the three rivers are those that provide the monthly demands downstream each river, and not exceed a maximum monthly flow
limits. The maximum flow limits adopted are for three flow cases, wet, average and dry years. For each flow case three scenarios for the monthly water quality parameters were adopted , the average values(scenario 1),the 10% increase in EC,TDS, and BOD (Scenario
2),and the 20% increase in these three water quality parameters (Scenario 3). Hence nine cases are adopted and for each an optimum monthly flows are found for each river. The genetic optimization model adopt a variable number of population of 100 to 1000 in a step of
100,0.8 and 0.2 cross over and mutation rates, and three iterations to reach the stable optimum solutions. The results indicates that the flow analysis shows a significant decrease in the flow values of the three rives after year 2000,hence, the flow values for the period of (1994-1999), are excluded and the only used values are those for (2000-2011). The estimated monthly demands exhibits low variation. The observed optimum monthly flow values decrease in general as the case flow changed from wet to normal and dry cases. The change in Scenarios from S1 to S2 and S3 , do not necessarily increase all the required optimum monthly flow values. The obtained minimum objective functions do not exhibits a certain trend with the change in the flow cases and/or the change in the scenarios.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
A Genetic Algorithm for Task Allocation Problem in the Internet of Things

In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical de

... Show More
Scopus (3)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2011
Journal Name
Al-mustansiriyah Journal Of Science
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Multi-Objective Genetic Algorithm-Based Technique for Achieving Low-Power VLSI Circuit Partition

     Minimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Grey Wolf Optimization Algorithm: A Survey

     The Gray Wolf Optimizer (GWO) is a population-based meta-heuristic algorithm  that belongs to the family of swarm intelligence algorithms inspired by the social behavior of gray wolves, in particular the social hierarchy and hunting mechanism. Because of its simplicity, flexibility, and few parameters to be tuned, it has been applied to a wide range of optimization problems. And yet it has some disadvantages, such as poor exploration skills, stagnation at local optima, and slow convergence speed. Therefore, different variants of GWO have been proposed and developed to address these disadvantages. In this article, some literature, especially from the last five years, has been reviewed and summarized by well-known publishers. Fir

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Hexapod Robot Static Stability Enhancement using Genetic Algorithm

Abstract

Hexapod robot is a flexible mechanical robot with six legs. It has the ability to walk over terrain. The hexapod robot look likes the insect so it has the same gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to stay statically stable at all the times during each gait in order not to fall with three or more legs continuously contacts with the ground. The safety static stability walking is called (the stability margin). In this paper, the forward and inverse kinematics are derived for each hexapod’s leg in order to simulate the hexapod robot model walking using MATLAB R2010a for all gaits and the geometry in order to derive the equations of the sub-constraint workspaces for each

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
SBOA: A Novel Heuristic Optimization Algorithm

A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu May 01 2008
Journal Name
2008 International Conference On Computer And Communication Engineering
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF