A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and pH).The objective function adopted in the optimization model is in a form the sum of difference in each of the 5 water quality parameters, resulting from the
mixing equation of the waters of the rivers, from the accepted limits of these parameters , weighted by a penalty factor assigned for each water quality parameter according to its importance. The adopted acceptable limits are 1500,1000, 6,4 and 7, while the penalty factors are 1,0.8,0.8,0.8,and 0.2 for EC,TDS,BOD,DO,and pH respectively. The constraints adopted on the decision variables which the monthly flows of the three rivers are those that provide the monthly demands downstream each river, and not exceed a maximum monthly flow
limits. The maximum flow limits adopted are for three flow cases, wet, average and dry years. For each flow case three scenarios for the monthly water quality parameters were adopted , the average values(scenario 1),the 10% increase in EC,TDS, and BOD (Scenario
2),and the 20% increase in these three water quality parameters (Scenario 3). Hence nine cases are adopted and for each an optimum monthly flows are found for each river. The genetic optimization model adopt a variable number of population of 100 to 1000 in a step of
100,0.8 and 0.2 cross over and mutation rates, and three iterations to reach the stable optimum solutions. The results indicates that the flow analysis shows a significant decrease in the flow values of the three rives after year 2000,hence, the flow values for the period of (1994-1999), are excluded and the only used values are those for (2000-2011). The estimated monthly demands exhibits low variation. The observed optimum monthly flow values decrease in general as the case flow changed from wet to normal and dry cases. The change in Scenarios from S1 to S2 and S3 , do not necessarily increase all the required optimum monthly flow values. The obtained minimum objective functions do not exhibits a certain trend with the change in the flow cases and/or the change in the scenarios.
Abstract
The study presents a mathematical model with a disaggregating approach to the problem of production planning of a fida Company; which belongs to the ministry of Industry. The study considers disaggregating the entire production into 3 productive families of (hydraulic cylinders, Aldblatt (dampers), connections hydraulics with each holds similar characteristics in terms of the installation cost, production time and stock cost. The Consequences are an ultimate use of the available production capacity as well as meeting the requirements of these families at a minimal cost using linear programming. Moreover, the study considers developing a Master production schedule that drives detailed material and production requi
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreFuture generations of wireless networks are expected to heavily rely on unmanned aerial vehicles (UAVs). UAV networks have extraordinary features like high mobility, frequent topology change, tolerance to link failure, and extending the coverage area by adding external UAVs. UAV network provides several advantages for civilian, commercial, search and rescue applications. A realistic mobility model must be used to assess the dependability and effectiveness of UAV protocols and algorithms. In this research paper, the performance of the Gauss Markov (GM) and Random Waypoint (RWP) mobility models in multi-UAV networks for a search and rescue scenario is analyzed and evaluated. Additionally, the two mobility models GM and RWP are descr
... Show MoreAbstract
The current research aims to reveal the extent to which all scoring rubrics data for the electronic work file conform to the partial estimation model according to the number of assumed dimensions. The study sample consisted of (356) female students. The study concluded that the list with the one-dimensional assumption is more appropriate than the multi-dimensional assumption, The current research recommends preparing unified correction rules for the different methods of performance evaluation in the basic courses. It also suggests the importance of conducting studies aimed at examining the appropriateness of different evaluation methods for models of response theory to the
... Show MoreThe study aims at showing the role of tax audit in Impact the quality of tax statements. Tax audit is one of the most important means used by tax management to identify taxable revenues in a just, fair manner. The quality of statements relies on the extent to which the information provided by taxpayers is true and accurate. Tax audit works is compatible with the strategy of increasing tax adherence and detecting non-adherence cases and penalizing those who commit such violations. The study reached a number of results and conclusions. One of the most important results is that tax audit helps improve the information content of the taxpayers tax statements. This leads to recalculating taxable incomes and re-fixing t
... Show More