The evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient from tank and tubes, test the collector with various
aspect ratios (32.9 and 27.2). The enhancement in collector performance is studied by using two reflectors (Flat
Plate and Curved Plate) and nanofluid (Water-AL2O3).Theoretical work is run by software (Fluent 6.3), to compute
the velocity and temperature profiles within the tube, for different tube diameters, effect of tube junction angle and
stagnant region in the bottom of the evacuated tube. The experimental results shows that the heat loss coefficient
for tube is W/m2.K and for tank is W/m2.K, the maximum collector temperature is 79°C in winter and
99°C in summer, while that belong to nanofluid collector is 99°C in winter. The best tilted angle (optimum) of
evacuated tube is 41° annually. The collector efficiency increased when using nanofluid of (1, 0.6, 0.3)% volume
fraction as(28.4, 6.8, 0.6)% respectively. The efficiency decreases as (33, 62)% when decreasing tube aspect ratio
from 38.6% to 32.9% and 27.2% respectively. An increase of (16.9 and 7.08)% in collector efficiency is obtained
when using curved and flat plate reflectors respectively. From simulation the best junction angle of the tank is
22.5°. The stagnant region is influenced with changing heat flux, tilted angle and aspect ratio.
Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreA group of birds were passively immunized by a transfer factor extracted from lymphocytes sensitized to adenovirus and then they were challenged by the virulent virus (adenovirus isolated from hydropericardium infected birds). The results indicatede that the groups of birds that received the transfer factor or sensitized lymphocytes were protected from having any grossly pathological changes and having a high level of anti adenovirus antibodies.
Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d
... Show MoreFrequently, load associated mode of failure, rutting and fatigue, are the main failure types found in some newly constructed roads within Baghdad, the capital of Iraq, and some suburban areas. The use of excessive amount of natural sand in asphalt concrete mixes which is attractive to local contractors could be one of the possible causes to the lack of strength properties of the mixes resulting in frustration in the pavement performance. In this study, the performance properties of asphalt concrete mixes with two natural sand types, desert and river sands, were evaluated. Moreover, five replacement rates of 0, 25, 50, 75, and 100% by weight of the fine aggregate finer than 4.75 were used. The performance properties including moisture susc
... Show MoreDrilling fluid loss during drilling operation is undesirable, expensive and potentially hazardous problem.
Nasiriyah oil field is one of the Iraqi oil field that suffer from lost circulation problem. It is known that Dammam, um-Radoma, Tayarat, Shiranish and Hartha are the detecting layers of loss circulation problem. Different type of loss circulation materials (LCMs) ranging from granular, flakes and fibrous were used previously to treat this problem.
This study presents the application of rice as a lost circulation material that used to mitigate and stop the loss problem when partial or total losses occurred.
The experim
... Show MoreForm of investment in infrastructure important factor to drive economic growth in any country, with the dwindling ability of governments to provide the necessary funds for such investments, emerged as a rising trend for private sector involvement in public projects and infrastructure, and one of these trends is the build-operate-transfer system (BOT), which commonly used in various developed and developing countries as one of the tools used in the implementation of these investments, as the private sector under this system design, finance, build and operate the project, and are re-administration of the state after a certain period under a contractual agreement between the parties of the contract. As this system provides majo
... Show MoreObjectives: The study aim to evaluate nursing performance during nasogastric tube feeding in neonatal intensive care unit. Methodology: A descriptive study was carried out in Neonatal Intensive Care Unit at al–Batool Teaching Hospital, for the purpose of evaluate of quality of nursing performance for premature baby during nasogastric tube feeding in neonatal intensive care unit. The study consumed the period from 4th of December 2017 to the 24nd of April 2018, Non-probability purposive sample of (25) nurses working in the neonatal intensive care unit. The data were collected through the use of Observational instrument which consist of socio-demographic characteristics, quality of nursing care. Results: The study shows that the majority
... Show More
Natural convection in an annular space provided with metal foam fins attached to the inner cylinder is studied numerically. The metal foam fins made of copper were inserted in different axial sections with three fins in each section. The temperature of the inner cylinder is kept constant while the annular outer surface is adiabatic. The thickness effect of the inner pipe wall was considered. Naiver Stokes equation with Boussinesq approximation is used for the fluid regime while Brinkman-Forchheimer Darcy model is used for metal foam. In addition, the local thermal non-equilibrium condition in the energy equation of the porous media is presumed. The effect of Rayleigh numb |