The differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree. In ST approach,
the spectral energy index and the standard deviation (STD) are calculated from the S-matrix obtained by discrete S-transform. The two approaches are tested for generating a trip signal and disconnecting the transformer supply experimentally using 1KVA, 220/110V, 50Hz, ∆ / Y threephase transformer. The experimental results show that the trip signal is initiated faster in WPT approach while the transformer is disconnected from the supply after a delay of 10-15msec in the
two approaches due to computer interface and the relay circuit used.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe relationship between costs of environment and costs of product life – cycle. Boubtlessly when the economical unit exercise their productive works, they lead to pollution in water, air and soil as well as all stages of product life- cycle from Rans Dstage, production stage, packaging stage and finally abandonment stage- Pollution causes environmental costs. Lgnoring or hiding environmental costs and no taking them in consideration with product cost lead to a wrong account of preduot cost.
Therefore, environmental costs should be included and matched for all stages with in product costs to know which activities, processes
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreBearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show MoreVisible-light photodetectors constructed Fe2O3 were manufactured effectively concluded chemical precipitation technique, films deposited on glass substrate and Si wafer below diverse dopant (0,2,4,6)% of Cl, enhancement in intensity with X-ray diffraction analysis was showed through favored orientation along the (110) plane, the optical measurement presented direct allowed with reduced band gap energies thru variation doping ratio , current–voltage characteristics Fe2O3 /p-Si heterojunction revealed respectable correcting performance in dark, amplified by way of intensity of incident light, moreover good photodetector properties with enhancement in responsivity occurred at wavelength between 400 nm and 470 nm.
Grass trimming operation is widely done in Malaysia for the purpose of maintaining highways. Large number of operators engaged in this work encounters high level of noise generated by back pack type grass trimmer used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known. For predicting the work efficiency deterioration, fuzzy tool has been used in present research. It has been established that a fuzzy computing system will help in identification and analysis of fuzzy models fuzzy system offers a convenient way of representing the relationships between the inputs and outputs of a system in the form of IF-THEN rules. The paper presents
... Show More