Resistance spot welding (RSW) aluminum alloys has a major problem of inconsistent quality from weld to weld, because of the problems of the non-uniform oxide layer. The high resistivity of the oxide causes strong heat released which influence significantly on the electrode lifetime and the weld quality. Much effort has been devoted experimentally to the study of the sheet surface characteristics for as-received sheet and surface pretreatment sheet by pickling in NaOH and glassblasted with three thicknesses (0.6, 1.0, and 1.5 mm) of AA1050. Three different welding process parameters energy setup as a low, medium, and high were carried. Tensile-shear strength tests were performed to indicate the weld quality. Moreover, microhardness tests, macro/micrographs, and
SEM/EDS examinations were carried out to analyze, compare, and evaluate the effect of surface conditions on the weldability. The as received sheet showed a higher electrical contact resistance because of its thicker and non-uniform oxide layer. In contrast, the glass-blasted sheet showed lower value, since it has a roughest surface, which leads to easy breakdown the oxide layer. The highest average values and least scattering of the maximum load fracture are with treated sheet by
pickling in NaOH, these values are 760, 1193, and 2283 N for 0.6, 1.0, and 1.5 mm sheet thickness respectively for medium input energy. In contrast, the minimum values with glass-blasted sheet are 616, 1008, and 2020 N for 0.6, 1.0, and 1.5 mm sheet. The microhardness profiles of the fusion zone and HAZ is the lower than the base metal for all cases. Numerical simulation with SORPAS® was used to simulate and optimize the process parameters, and it has given good results in prediction when they compared with experiments.
Metal complexes of Cu (II), Fe (III) and Mn (II) with Quinaldic acid (L1) and 1, 10-Phenathroline (L2) are synthesized and characterized by standaral physic- chemical procedures (element analysis, metal analysis, FTIR, Uv-Vis, magnetic moment and conductometeric measurements). On the base of these studies, mononuclear and six coordinated octahedral geometry and nonelectrolyte of these complexes have been proposed. The standard heat of formation (?Hºf) and binding energy (?Eb) for the free ligands and their complexes are calculated by using the PM3 method at 273K of Hyperchem.-8 program. The complexes are more stable than their ligands. Moreover, the electrostatic potential of free ligands are measured to investigate the reactive site of th
... Show MoreJumping ability is a fundamental variable in many sports, as its execution requires an integration of muscular strength Q1 and certain biomechanical variables. This is particularly evident in gymnastics jumping events and jump shots in ball games, both of which rely on a high level of vertical resistance. Vertical resistance serves as an indicator of an athlete’s ability to overcome their body weight while counteracting gravitational force to achieve optimal performance. As such, it is considered one of the key factors in movements that demand explosive power and speed. The researchers believe that despite the significant relationship between vertical resistance, speed-strength of the arms and legs, and certain biomechanical varia
... Show MoreAntibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusi
... Show MoreIt is often noted that disordered materials have different chemical properties to their more “ordered” cousins. Quantifying these effects in terms of thermodynamics is challenging in part because disordered materials can be difficult to characterize and are frequently relatively unstable. During the course of our experiments to understand the effects of disorder in catalysts for water oxidation we observed that many disordered manganese and cobalt oxide water oxidation catalysts directly oxidized peroxide in contrast to their more ordered analogues which catalyzed its disproportionation, that is, MnO2+2H+ +H2O2! Mn2+ +2H2O+O2(oxidation) versus H2O2!H2O+1=2 O2(disproportionation). By measuring the efficiency for one reaction over the oth
... Show MoreBackground: Direct measurement of intracellular magnesium using erythrocytes has been suggested as a sensitive indicator for the estimation of body magnesium store. Marked depletion in plasma and erythrocyte magnesium levels was particularly evident in diabetic patients with advanced retinopathy and poor diabetic control. While insulin has been shown to stimulate erythrocyte magnesium uptake, hyperglycemia per se suppressed intracellular magnesium in normal human red cells.
Aim of the study: To investigate the erythrocyte magnesium level in Iraqi type I and II diabetic patients, with specific emphasis on the effect of both, metabolic control and the type of antidiabetic treatments.
Methods: Sixty two diabetic patients (7 with type
Background/Objectives: Nonsurgical periodontal treatment (NSPT) is the gold-standard technique for treating periodontitis. However, an individual’s susceptibility or the inadequate removal of subgingival biofilms could lead to unfavorable responses to NSPT. This study aimed to assess the potential of salivary and microbiological biomarkers in predicting the site-specific and whole-mouth outcomes of NSPT. Methods: A total of 68 periodontitis patients exhibiting 1111 periodontal pockets 4 to 6 mm in depth completed the active phase of periodontal treatment. Clinical periodontal parameters, saliva, and subgingival biofilm samples were collected from each patient at baseline and three months after NSPT. A quantitative PCR assay was us
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show More