Resistance spot welding (RSW) aluminum alloys has a major problem of inconsistent quality from weld to weld, because of the problems of the non-uniform oxide layer. The high resistivity of the oxide causes strong heat released which influence significantly on the electrode lifetime and the weld quality. Much effort has been devoted experimentally to the study of the sheet surface characteristics for as-received sheet and surface pretreatment sheet by pickling in NaOH and glassblasted with three thicknesses (0.6, 1.0, and 1.5 mm) of AA1050. Three different welding process parameters energy setup as a low, medium, and high were carried. Tensile-shear strength tests were performed to indicate the weld quality. Moreover, microhardness tests, macro/micrographs, and
SEM/EDS examinations were carried out to analyze, compare, and evaluate the effect of surface conditions on the weldability. The as received sheet showed a higher electrical contact resistance because of its thicker and non-uniform oxide layer. In contrast, the glass-blasted sheet showed lower value, since it has a roughest surface, which leads to easy breakdown the oxide layer. The highest average values and least scattering of the maximum load fracture are with treated sheet by
pickling in NaOH, these values are 760, 1193, and 2283 N for 0.6, 1.0, and 1.5 mm sheet thickness respectively for medium input energy. In contrast, the minimum values with glass-blasted sheet are 616, 1008, and 2020 N for 0.6, 1.0, and 1.5 mm sheet. The microhardness profiles of the fusion zone and HAZ is the lower than the base metal for all cases. Numerical simulation with SORPAS® was used to simulate and optimize the process parameters, and it has given good results in prediction when they compared with experiments.
The complexes of the 2-hydroxy-4-Nitro phenyl piperonalidene with metal ions Cr(III), Ni(II), Pt(IV) and Zn(II) were prepared in ethanolic solution. These complexes were characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was study following the molar ratio method. From the spectral studies, monomer structures proposed for the nickel (II) and Zinc (II) complexes while dimeric structures for the chromium (III) and platinum (IV) were proposed. Octahedral geometry was suggested for all prepared complexes except zinc (II) has tetrahedral geometry, Structural geometries of these compounds were also suggested in gas phase by using
... Show MoreBackground: In dentistry, dentist takes the advantages of soft lining materials due to the viscoelastic properties. The major problem is the adhesion of the soft liner with the denture base material. Materials and Methods: Heat cured of high impact acrylic resin specimens prepared with dimensions 75x13x13mm for shear bond strength test, soft lining material (Refit and Mollosil) with a 3-mm thickness and used to join each two acrylic blocks. Also four specimens with the same previous dimensions utilized for chemical and physical surface analysis. The specimens grouped as control (without plasma) and experiment (with oxygen plasma) treated high impact acrylic specimens. Results: Plasma treatment increased the shear bond strength for both Refi
... Show MoreRecently, many materials have shown that they can be used as alternatives to chemicals materials in order to be used to improve the properties of drilling fluids. Some of these materials are banana peels and corn cobs which both are considered environmentally- friendly materials. The results of the X-ray diffraction examination have proved that the main components of these materials are cellulose and hemicellulose, which contribute greatly to the increasing of the effectiveness of these two materials. Due to their distinct composition, these two materials have improved the rheological properties (plastic viscosity and yield point) and reduced the filtration of the drilling fluids to a large extent. The addition rates used for each o
... Show MoreSUMMARY. – Nanocrystalline thin fi lms of CdS are deposited on glass substrate by chemical bath deposited technique using polyvinyl alcohol (PVA) matrix solution. Crystallite size of the nanocrystalline films are determining from broading of X-ray diffraction lines and are found to vary from 0.33-0.52 nm, an increase of molarity the grain size decreases which turns increases the band gap. The band gap of nanocrystalline material is determined from the UV spectrograph. The absorption edge and absorption coefficient increases when the molarity increases and shifted towards the lower wavelength.
This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
In the present work, pulsed laser deposition (PLD) technique was applied to a pellet of Chromium Oxide (99.999% pure) with 2.5 cm diameter and 3 mm thickness at a pressure of 5 Tons using a Hydraulic piston. The films were deposited using Nd: YAG laser λ= (4664) nm at 600 mJ and 400 number of shot on a glass substrate, The thickness of the film was (107 nm). Structural and morphological analysis showed that the films started to crystallize at annealing temperature greater than 400 oC. Absorbance and transmittance spectra were recorded in the wavelength range (300-
4400) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of d
Background: Dental implants provide a unique treatment modality for the replacement of a lost dentition .This is accomplished by the insertion of relatively an inert material (a biomaterial) into the soft and hard tissue of the jaws, there by providing support and retention for dental prostheses. Low level laser therapy (LLLT) is an effective tool used to prompt bone repair and remodeling, this has referred to the biostimulation effect of LLLT. The Aim of this study was to evaluate the effects of inflammatory cells on osseointegration of CpTi implant irradiated by low level laser. Materials and Methods: thirty two adult New Zealand white rabbits, received titanium implants were inserted in the tibia. The right side is considered as experime
... Show MoreThe pollution producing from textile industries effluents is growing since the years, due to at discharged lots of it in water without treatment. The resulting effluent is colourful, highly toxic, and poses a significant environmental hazard. This problem can be solved by using enzymic biological treatment, where the Congo red dye was used with concentrations (100,200,300,500) mg /L, pH values (3,4,5,6,7,8), and variable temperatures (25,35,45)°C, the best removal of Congo red (CR) dye under optimum conditions for degradation was at concentration of 100 mg/L, at (pH 6, 25 °C) with efficiency of 99.85 % using the peroxidase enzyme extracted from red radish plant, while the removal percentage decreased when increase dye concentration
... Show MoreThe microstructures of rapidly solidified laser clad layers of laser cladding of Inconel 617 with different nickel-aluminum premixed clad powders are discussed. The effect of different cladding speeds on the microstructures of rapidly solidified laser clad layers is discussed too. The detailed microstructural results showed that different growth mechanisms are produced during rapid solidification. These are planar, cellular, cellular/dendritic and dendritic.
Oil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff
... Show More