The aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred
pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were mointered in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation describes the flexural strength as a function of indirect (surface) pulse velocity. The application of these equations may be extended to cover the assessment of flexural strength of constructed concrete kerb units or in-situ concreting kerbstone and any other precast concrete units. Finally, a relation between direct and indirect pulse velocities of the a given concrete was predicted and suggested to be employed in case when one of the velocities is not
available can be measured for other ultrasonic pulse test applications
A long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen
... Show MoreBack ground: Glass ionomer materials lack resistance to wear and pressure and are susceptible to moisture during the initial stages of setting and dehydration. So this study was done to assess diametral tensile strength and microhardness of glass ionomer reinforced by different amounts of hydroxyapatite. Materials and methods: In this study a hydroxyapatite material was added to glass monomer cement at different ratios: 10%, 15%, 20%, 25% and 30% (by weight). The diametral tensile strength test described by the British standard specification for zinc polycarboxylate cement was used in this study and the microhardness test was performed using Vickers microhardness testing machine and the microhardness values were calculated and statistical c
... Show MoreBackground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), the effect of post types ( Manually Milled Zirconia post, Prefabricated Fiber post, prefabricated Zirconia post) and the type of cement used (GIC, self-adhesive resin cement) on the bond strength between the posts and root dentin by using push-out test. Material and methods: Forty eight mandibular premolars extracted for orthodontic reasons (single rooted) were instrumented with ProTaper system (hand use) and obturated with gutta percha for ProTaper using AH26® root canal sealer following the manufacturer instructions. After 24 hours, post space was prepared using Zirix and Glassix drills no.3 creating 8 mm dept
... Show MoreThe slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz
... Show MoreCarbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were
A steel-concrete composite structure (1) is described. The steel-concrete composite structure comprises a steel member (2) having an upper surface (5) and a plurality of shear connector elements (6) upstanding from the upper surface and a concrete slab (4) having upper and lower surfaces (7, 8). The slab is supported on its lower surface by the upper surface of the steel member. The slab comprises a plurality of through holes (9) between the upper and lower surfaces, each through hole tapering towards the lower surface so as to form an inverted frustally-shaped seating surface (10). The concrete slab is configured and positioned with respect to the steel member such that at least one shear connector element projects into each through hole.
... Show MoreEmpirical equations for estimating thickening time and compressive strength of bentonitic - class "G" cement slurries were derived as a function of water to cement ratio and apparent viscosity (for any ratios). How the presence of such an equations easily extract the thickening time and compressive strength values of the oil field saves time without reference to the untreated control laboratory tests such as pressurized consistometer for thickening time test and Hydraulic Cement Mortars including water bath ( 24 hours ) for compressive strength test those may have more than one day.
This research adopts the estimation of mass transfer coefficient in batch packed bed distillation column as function of physical properties, liquid to vapour molar rates ratio (L / V), relative volatility (α), ratio of vapour and liquid diffusivities (DV / DL), ratio of vapour and liquid densities (ρV / ρL), ratio of vapour and liquid viscosities (μV/ μL).
The experiments are done using binary systems, (Ethanol Water), (Methanol Water), (Methanol Ethanol), (Benzene Hexane), (Benzene Toluene). Statistical program (multiple regression analysis) is used for estimating the overall mass transfer coefficient of vapour and liquid phases (KOV and KOL) in a correlation which represented the data fairly well.
KOV = 3.3 * 10-10
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p
... Show MorePermeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into
... Show More